Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stabilizing Zn Metal Anode Through Regulation of Zn Ion Transfer and Interfacial Behavior with a Fast Ion Conductor Protective Layer
Small ( IF 13.0 ) Pub Date : 2023-07-24 , DOI: 10.1002/smll.202303963 Na Guo 1 , Zhi Peng 1 , Wenjie Huo 1 , Yuehua Li 1 , Shude Liu 2, 3, 4 , Ling Kang 5 , Xianwen Wu 6 , Lei Dai 1 , Ling Wang 1 , Seong Chan Jun 4 , Zhangxing He 1
Small ( IF 13.0 ) Pub Date : 2023-07-24 , DOI: 10.1002/smll.202303963 Na Guo 1 , Zhi Peng 1 , Wenjie Huo 1 , Yuehua Li 1 , Shude Liu 2, 3, 4 , Ling Kang 5 , Xianwen Wu 6 , Lei Dai 1 , Ling Wang 1 , Seong Chan Jun 4 , Zhangxing He 1
Affiliation
Aqueous Zn-ion batteries (AZIBs) attract intensive attention owing to their environmental friendliness, cost-effectiveness, innate safety, and high specific capacity. However, the practical applications of AZIBs are hindered by several adverse phenomena, including corrosion, Zn dendrites, and hydrogen evolution. Herein, a Zn anode decorated with a 3D porous-structured Na3V2(PO4)3 (NVP@Zn) is obtained, where the NVP reconstruct the electrolyte/anode interface. The resulting NVP@Zn anode can provide a large quantity of fast and stable channels, facilitating enhanced Zn ion deposition kinetics and regulating the Zn ions transport process through the ion confinement effect. The NASICON-type NVP protective layer promote the desolvation process due to its nanopore structure, thus effectively avoiding side reactions. Theoretical calculations indicate that the NVP@Zn electrode has a higher Zn ion binding energy and a higher migration barrier, which demonstrates that NVP protective layer can enhance Zn ion deposition kinetics and prevent the unfettered 2D diffusion of Zn ions. Therefore, the results show that NVP@Zn/MnO2 full cell can maintain a high specific discharge capacity of 168 mAh g−1 and a high-capacity retention rate of 74.6% after cycling. The extraordinary results obtained with this strategy have confirmed the promising applications of NVP in high-performance AZIBs.
中文翻译:
通过快速离子导体保护层调节锌离子传输和界面行为来稳定锌金属阳极
水系锌离子电池(AZIB)因其环境友好、成本效益、固有安全性和高比容量而受到广泛关注。然而,AZIBs的实际应用受到一些不利现象的阻碍,包括腐蚀、锌枝晶和析氢。在此,获得了用3D多孔结构Na 3 V 2 (PO4) 3 (NVP@Zn)装饰的Zn阳极,其中NVP重建了电解质/阳极界面。由此产生的NVP@Zn阳极可以提供大量快速稳定的通道,有利于增强Zn离子沉积动力学,并通过离子限制效应调节Zn离子传输过程。NASICON型NVP保护层因其纳米孔结构促进去溶剂化过程,从而有效避免副反应。理论计算表明,NVP@Zn电极具有更高的Zn离子结合能和更高的迁移势垒,这表明NVP保护层可以增强Zn离子沉积动力学并防止Zn离子不受约束的二维扩散。因此,结果表明NVP@Zn/MnO 2全电池在循环后仍能保持168 mAh g -1的高比放电容量和74.6%的高容量保持率。通过该策略获得的非凡结果证实了 NVP 在高性能 AZIB 中的应用前景。
更新日期:2023-07-24
中文翻译:
通过快速离子导体保护层调节锌离子传输和界面行为来稳定锌金属阳极
水系锌离子电池(AZIB)因其环境友好、成本效益、固有安全性和高比容量而受到广泛关注。然而,AZIBs的实际应用受到一些不利现象的阻碍,包括腐蚀、锌枝晶和析氢。在此,获得了用3D多孔结构Na 3 V 2 (PO4) 3 (NVP@Zn)装饰的Zn阳极,其中NVP重建了电解质/阳极界面。由此产生的NVP@Zn阳极可以提供大量快速稳定的通道,有利于增强Zn离子沉积动力学,并通过离子限制效应调节Zn离子传输过程。NASICON型NVP保护层因其纳米孔结构促进去溶剂化过程,从而有效避免副反应。理论计算表明,NVP@Zn电极具有更高的Zn离子结合能和更高的迁移势垒,这表明NVP保护层可以增强Zn离子沉积动力学并防止Zn离子不受约束的二维扩散。因此,结果表明NVP@Zn/MnO 2全电池在循环后仍能保持168 mAh g -1的高比放电容量和74.6%的高容量保持率。通过该策略获得的非凡结果证实了 NVP 在高性能 AZIB 中的应用前景。