当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Accelerated Catalytic Ozonation in a Mesoporous Carbon-Supported Atomic Fe–N4 Sites Nanoreactor: Confinement Effect and Resistance to Poisoning
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2023-07-24 , DOI: 10.1021/acs.est.2c08101
Wei Qu 1 , Manhui Luo 1 , Zhuoyun Tang 1 , Tao Zhong 1 , Huinan Zhao 1 , Lingling Hu 1 , Dehua Xia 1, 2 , Shuanghong Tian 1, 2 , Dong Shu 3 , Chun He 1, 2
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2023-07-24 , DOI: 10.1021/acs.est.2c08101
Wei Qu 1 , Manhui Luo 1 , Zhuoyun Tang 1 , Tao Zhong 1 , Huinan Zhao 1 , Lingling Hu 1 , Dehua Xia 1, 2 , Shuanghong Tian 1, 2 , Dong Shu 3 , Chun He 1, 2
Affiliation
![]() |
The design of a micro-/nanoreactor is of great significance for catalytic ozonation, which can achieve effective mass transfer and expose powerful reaction species. Herein, the mesoporous carbon with atomic Fe–N4 sites embedded in the ordered carbon nanochannels (Fe–N4/CMK-3) was synthesized by the hard-template method. Fe–N4/CMK-3 can be employed as nanoreactors with preferred electronic and geometric catalytic microenvironments for the internal catalytic ozonation of CH3SH. During the CH3SH oxidation process, the mass transfer coefficient of the Fe–N4/CMK-3 confined system with sufficient O3 transfer featured a level of at least 1.87 × 10–5, which is 34.6 times that of the Fe–N4/C–Si unconfined system. Detailed experimental studies and theoretical calculations demonstrated that the anchored atomic Fe–N4 sites and nanoconfinement effects regulated the local electronic structure of the catalyst and promoted the activation of O3 molecules to produce atomic oxygen species (AOS) and reactive oxygen species (ROS), eventually achieving efficient oxidation of CH3SH into CO2/SO42–. Benefiting from the high diffusion rate and the augmentation of AOS/ROS, Fe–N4/CMK-3 exhibited an excellent poisoning tolerance, along with high catalytic durability. This contribution provides the proof-of-concept strategy for accelerating catalytic ozonation of sulfur-containing volatile organic compounds (VOCs) by combining confined catalysis and atomic catalysts and can be extended to the purification of other gaseous pollutants.
中文翻译:
介孔碳支撑原子 Fe-N4 位点纳米反应器中的加速催化臭氧化:限制效应和抗中毒能力
微纳反应器的设计对于催化臭氧化具有重要意义,可以实现有效的传质并暴露强大的反应物种。在此,通过硬模板法合成了在有序碳纳米通道中嵌入原子Fe-N 4位点的介孔碳(Fe-N 4 /CMK-3)。Fe–N 4 /CMK-3 可用作具有优选电子和几何催化微环境的纳米反应器,用于 CH 3 SH 的内部催化臭氧化。在CH 3 SH氧化过程中,具有足够O 3传递的Fe-N 4 /CMK-3约束体系的传质系数至少达到1.87×10 –5,是Fe-N 4 /CMK-3约束体系传质系数的34.6倍。 N 4 /C–Si 无侧限系统。详细的实验研究和理论计算表明,锚定原子Fe-N 4位点和纳米限域效应调节催化剂的局域电子结构,促进O 3分子活化产生原子氧(AOS)和活性氧(ROS) ,最终实现CH 3 SH高效氧化成CO 2 /SO 4 2–。受益于高扩散速率和 AOS/ROS 的增强,Fe–N 4 /CMK-3 表现出优异的中毒耐受性以及高催化耐久性。这一贡献提供了通过结合约束催化和原子催化剂来加速含硫挥发性有机化合物(VOC)的催化臭氧化的概念验证策略,并且可以扩展到其他气态污染物的净化。
更新日期:2023-07-24
中文翻译:

介孔碳支撑原子 Fe-N4 位点纳米反应器中的加速催化臭氧化:限制效应和抗中毒能力
微纳反应器的设计对于催化臭氧化具有重要意义,可以实现有效的传质并暴露强大的反应物种。在此,通过硬模板法合成了在有序碳纳米通道中嵌入原子Fe-N 4位点的介孔碳(Fe-N 4 /CMK-3)。Fe–N 4 /CMK-3 可用作具有优选电子和几何催化微环境的纳米反应器,用于 CH 3 SH 的内部催化臭氧化。在CH 3 SH氧化过程中,具有足够O 3传递的Fe-N 4 /CMK-3约束体系的传质系数至少达到1.87×10 –5,是Fe-N 4 /CMK-3约束体系传质系数的34.6倍。 N 4 /C–Si 无侧限系统。详细的实验研究和理论计算表明,锚定原子Fe-N 4位点和纳米限域效应调节催化剂的局域电子结构,促进O 3分子活化产生原子氧(AOS)和活性氧(ROS) ,最终实现CH 3 SH高效氧化成CO 2 /SO 4 2–。受益于高扩散速率和 AOS/ROS 的增强,Fe–N 4 /CMK-3 表现出优异的中毒耐受性以及高催化耐久性。这一贡献提供了通过结合约束催化和原子催化剂来加速含硫挥发性有机化合物(VOC)的催化臭氧化的概念验证策略,并且可以扩展到其他气态污染物的净化。