当前位置:
X-MOL 学术
›
Sustain. Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photocatalytic seawater splitting for hydrogen fuel production: impact of seawater components and accelerating reagents on the overall performance
Sustainable Energy & Fuels ( IF 5.0 ) Pub Date : 2023-07-25 , DOI: 10.1039/d3se00810j Manova Santhosh Yesupatham 1 , Ashil Augustin 1 , Nithish Agamendran 1 , Brahmari Honnappa 2 , Mariappan Shanmugam 1 , Prince J. J. Sagayaraj 1 , G. Thennarasu 3 , N. Clament Sagaya Selvam 4 , Karthikeyan Sekar 1
Sustainable Energy & Fuels ( IF 5.0 ) Pub Date : 2023-07-25 , DOI: 10.1039/d3se00810j Manova Santhosh Yesupatham 1 , Ashil Augustin 1 , Nithish Agamendran 1 , Brahmari Honnappa 2 , Mariappan Shanmugam 1 , Prince J. J. Sagayaraj 1 , G. Thennarasu 3 , N. Clament Sagaya Selvam 4 , Karthikeyan Sekar 1
Affiliation
The future fuel, hydrogen, is a clean, sustainable energy source with a substantial density of energy per unit volume/weight. Breakthroughs in hydrogen production, storage, and transportation are essential to meet the sustainable global energy demands. Solar-to-hydrogen conversion through water-splitting reactions (via photo/electro/photoelectro-processes) is a promising strategy for producing green hydrogen fuel. Specifically, the photocatalytic hydrogen generation reaction, mimicking artificial photosynthesis, is a simple and cost-effective method adopted for solar-hydrogen production. Various semiconductor photocatalysts and hybrid photocatalytic systems have been developed to address the sluggish kinetics and selectivity of pristine water/seawater splitting reactions. Recently, seawater has been used as feedstock for large-scale hydrogen production to advance the field and alleviate the scarcity of freshwater sources. This review article, therefore, aims to highlight the importance of seawater splitting reactions using different photocatalytic systems. A brief introduction to the fundamentals, historical progress, and mechanism of the seawater splitting reaction is presented. The impact of seawater components and accelerating reagents on the intrinsic performance of water splitting catalysts is discussed in detail, followed by an elaborate discussion of natural water and artificial seawater splitting with emphasis on onerous photocatalyst designs. Finally, the current challenges and opportunities of saltwater electrolysis for sustainable hydrogen fuel generation and applications are discussed.
中文翻译:
光催化海水分解用于氢燃料生产:海水成分和加速剂对整体性能的影响
未来的燃料氢是一种清洁、可持续的能源,单位体积/重量的能量密度很高。氢气生产、储存和运输方面的突破对于满足全球可持续能源需求至关重要。通过水分解反应将太阳能转化为氢气(通过光/电子/光电过程)是生产绿色氢燃料的一种有前景的策略。具体来说,光催化制氢反应模仿人工光合作用,是一种简单且经济有效的太阳能制氢方法。人们已经开发了各种半导体光催化剂和混合光催化系统来解决原始水/海水分解反应的缓慢动力学和选择性问题。最近,海水已被用作大规模制氢的原料,以推进该领域的发展并缓解淡水资源的短缺。因此,这篇综述文章旨在强调使用不同光催化系统进行海水分解反应的重要性。简要介绍基本原理、历史进展、并提出了海水分解反应的机理。详细讨论了海水成分和加速剂对水分解催化剂固有性能的影响,随后详细讨论了天然水和人工海水分解,重点是繁重的光催化剂设计。最后,讨论了目前盐水电解用于可持续氢燃料生产和应用的挑战和机遇。
更新日期:2023-07-25
中文翻译:
光催化海水分解用于氢燃料生产:海水成分和加速剂对整体性能的影响
未来的燃料氢是一种清洁、可持续的能源,单位体积/重量的能量密度很高。氢气生产、储存和运输方面的突破对于满足全球可持续能源需求至关重要。通过水分解反应将太阳能转化为氢气(通过光/电子/光电过程)是生产绿色氢燃料的一种有前景的策略。具体来说,光催化制氢反应模仿人工光合作用,是一种简单且经济有效的太阳能制氢方法。人们已经开发了各种半导体光催化剂和混合光催化系统来解决原始水/海水分解反应的缓慢动力学和选择性问题。最近,海水已被用作大规模制氢的原料,以推进该领域的发展并缓解淡水资源的短缺。因此,这篇综述文章旨在强调使用不同光催化系统进行海水分解反应的重要性。简要介绍基本原理、历史进展、并提出了海水分解反应的机理。详细讨论了海水成分和加速剂对水分解催化剂固有性能的影响,随后详细讨论了天然水和人工海水分解,重点是繁重的光催化剂设计。最后,讨论了目前盐水电解用于可持续氢燃料生产和应用的挑战和机遇。