Scientific Reports ( IF 3.8 ) Pub Date : 2023-07-23 , DOI: 10.1038/s41598-023-38678-6 Hardiljeet Kaur Boparai 1, 2 , Omneya El-Sharnouby 1 , Denis M O'Carroll 3
Aqueous-phase catalyzed reduction of organic contaminants via zerovalent copper nanoparticles (nCu0), coupled with borohydride (hydrogen donor), has shown promising results. So far, the research on nCu0 as a remedial treatment has focused mainly on contaminant removal efficiencies and degradation mechanisms. Our study has examined the effects of Cu0/Cun+ ratio, surface poisoning (presence of chloride, sulfides, humic acid (HA)), and regeneration of Cu0 sites on catalytic dechlorination of aqueous-phase 1,2-dichloroethane (1,2-DCA) via nCu0-borohydride. Scanning electron microscopy confirmed the nano size and quasi-spherical shape of nCu0 particles. X-ray diffraction confirmed the presence of Cu0 and Cu2O and x-ray photoelectron spectroscopy also provided the Cu0/Cun+ ratios. Reactivity experiments showed that nCu0 was incapable of utilizing H2 from borohydride left over during nCu0 synthesis and, hence, additional borohydride was essential for 1,2-DCA dechlorination. Washing the nCu0 particles improved their Cu0/Cun+ ratio (1.27) and 92% 1,2-DCA was removed in 7 h with kobs = 0.345 h−1 as compared to only 44% by unwashed nCu0 (0.158 h−1) with Cu0/Cun+ ratio of 0.59, in the presence of borohydride. The presence of chloride (1000–2000 mg L−1), sulfides (0.4–4 mg L−1), and HA (10–30 mg L−1) suppressed 1,2-DCA dechlorination; which was improved by additional borohydride probably via regeneration of Cu0 sites. Coating the particles decreased their catalytic dechlorination efficiency. 85–90% of the removed 1,2-DCA was recovered as chloride. Chloroethane and ethane were main dechlorination products indicating hydrogenolysis as the major pathway. Our results imply that synthesis parameters and groundwater solutes control nCu0 catalytic activity by altering its physico-chemical properties. Thus, these factors should be considered to develop an efficient remedial design for practical applications of nCu0-borohydride.
中文翻译:
纳米 Cu0-硼氢化物体系中 1,2-DCA 的催化脱氯:Cu0/Cun+ 比例、表面中毒和 Cu0 位点再生的影响
通过零价铜纳米粒子 (nCu 0 ) 与硼氢化物(氢供体)结合的水相催化还原有机污染物,已显示出有希望的结果。迄今为止,nCu 0作为补救处理的研究主要集中在污染物去除效率和降解机制上。我们的研究考察了 Cu 0 /Cu n+比率、表面中毒(存在氯化物、硫化物、腐殖酸 (HA))以及 Cu 0位点再生对水相 1,2-二氯乙烷催化脱氯的影响 (1 ,2-DCA)通过nCu 0 -硼氢化物。扫描电子显微镜证实了nCu 0颗粒的纳米尺寸和准球形形状。X射线衍射证实了Cu 0和Cu 2 O的存在,并且X射线光电子能谱也提供了Cu 0 /Cu n+比率。反应性实验表明nCu 0不能利用nCu 0合成期间剩余的硼氢化物中的H 2,因此额外的硼氢化物对于1,2-DCA脱氯是必需的。清洗 nCu 0颗粒改善了其 Cu 0 /Cu n+比率 (1.27),并且 92% 1,2-DCA 在 7 小时内被去除,k obs = 0.345 h -1相比之下,未清洗的 nCu 0 (0.158 h)仅去除了 44% -1 ) ,在硼氢化物存在下,Cu 0 /Cu n+比率为0.59。氯化物(1000–2000 mg L -1)、硫化物(0.4–4 mg L -1)和HA(10–30 mg L -1)的存在抑制了1,2-DCA脱氯;这可以通过额外的硼氢化物来改善,这可能是通过 Cu 0位点的再生。颗粒的涂层降低了它们的催化脱氯效率。85-90% 的去除 1,2-DCA 以氯化物形式回收。氯乙烷和乙烷是主要的脱氯产物,表明氢解是主要途径。我们的结果表明合成参数和地下水溶质通过改变其物理化学性质来控制 nCu 0催化活性。因此,应该考虑这些因素来为nCu 0 -硼氢化物的实际应用开发有效的补救设计。