洪水是由一定因素引起的自然灾害,这些洪水会造成大量的物质或非物质损失。万隆拉亚地区覆盖两市两区,包括万隆市、芝马希市、万隆摄政区和西万隆摄政区。洪水敏感性绘图可以通过多种方式完成,但最有效的方法之一是使用基于 MCDA 的 AHP 方法。本研究旨在利用层次分析法(AHP)多标准决策分析(MCDA)模型绘制大万隆地区洪水风险的敏感性图,并验证所获得的结果。本研究中AHP MCDA的使用是对每个调节因素赋予权重,并通过ArcGIS 10.8软件中的叠加加权技术进行应用。本研究发现,获得的洪水风险标准分为四类:(1)低风险;(2) 风险较大;(3) 高风险和 (4) 极端风险。大多数获得相当风险分类的地区是芝马希市、万隆县高风险区和万隆县高风险区。此外,通过将获取的地图与2002-2022年发生的洪水地图进行比较,验证结果得到平均ROC曲线百分比为76.4%,这些结果表明万隆拉亚洪水风险敏感性图是有效的。根据所使用的调节因子,可以使用NDVI、TWI、LU/LC、降雨量、坡度、高程、距道路距离和距河流距离等九个因子作为有效调节因子。大多数获得相当风险分类的地区是芝马希市、万隆县高风险区和万隆县高风险区。此外,通过将获取的地图与2002-2022年发生的洪水地图进行比较,验证结果得到平均ROC曲线百分比为76.4%,这些结果表明万隆拉亚洪水风险敏感性图是有效的。根据所使用的调节因子,可以使用NDVI、TWI、LU/LC、降雨量、坡度、高程、距道路距离和距河流距离等九个因子作为有效调节因子。大多数获得相当风险分类的地区是芝马希市、万隆县高风险区和万隆县高风险区。此外,通过将获取的地图与2002-2022年发生的洪水地图进行比较,验证结果得到平均ROC曲线百分比为76.4%,这些结果表明万隆拉亚洪水风险敏感性图是有效的。根据所使用的调节因子,可以使用NDVI、TWI、LU/LC、降雨量、坡度、高程、距道路距离和距河流距离等九个因子作为有效调节因子。这些结果表明万隆拉亚洪水风险敏感性图是有效的。根据所使用的调节因子,可以使用NDVI、TWI、LU/LC、降雨量、坡度、高程、距道路距离和距河流距离等九个因子作为有效调节因子。这些结果表明万隆拉亚洪水风险敏感性图是有效的。根据所使用的调节因子,可以使用NDVI、TWI、LU/LC、降雨量、坡度、高程、距道路距离和距河流距离等九个因子作为有效调节因子。
"点击查看英文标题和摘要"
Mapping Greater Bandung flood susceptibility based on multi-criteria decision analysis (MCDA) using AHP method
Floods are natural disasters caused by certain factors, and these floods can cause a lot of material or immaterial losses. Bandung Raya is an area with coverage of two cities and two districts consisting of Bandung City, Cimahi City, Bandung Regency, and West Bandung Regency. Flood susceptibility mapping can be done in various ways, but one of the most effective ways is by using the MCDA-based AHP method. This study aims to map the susceptibility of flood risk in the Greater Bandung area using the analytical hierarchy process (AHP) multi-criteria decision analysis (MCDA) model, as well as validating the results obtained. The use of AHP MCDA in this research is by giving weight to each conditioning factor, and applying it by means of overlay weighting technique in ArcGIS 10.8 software. This study found that the flood risk criteria obtained were four classifications: (1) low risk; (2) quite risk; (3) high risk and (4) extreme risk. Most areas that get quite risk classification are Cimahi City, high risk in Bandung Regency, and high risk in Bandung Regency. In addition, the results of the validation by comparing the map acquisition with the flood maps that occurred in 2002–2022 get an average ROC curve percentage of 76.4%, and these results show that the Bandung Raya flood risk susceptibility map is valid. Based on the conditioning factors used, nine factors such as NDVI, TWI, LU/LC, Rainfall, Slope, Elevation, Distance from Road, and Distance from River can be used as valid conditioning factors.