当前位置: X-MOL 学术Spectrochim. Acta. A Mol. Biomol. Spectrosc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rapid detection of thiabendazole residues in apple juice by surface-enhanced Raman scattering coupled with silver coated gold nanoparticles
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy ( IF 4.3 ) Pub Date : 2023-07-21 , DOI: 10.1016/j.saa.2023.123189
Yuying Song 1 , Huixin Qiu 1 , Yiqun Huang 2 , Xiaohui Wang 3 , Keqiang Lai 3
Affiliation  

In recent years, the excessive use of pesticides has posed significant hazards to the ecological environment and human health in the pursuit of high crop yields. In this work, we developed a simple, sensitive, and eco-friendly approach for rapid detection of thiabendazole in apple juice using surface-enhanced Raman scattering (SERS) coupled with silver-coated gold nanoparticles (Au@Ag NPs). The developed Au@Ag NPs exhibited excellent sensitivity, allowing for the detection of thiabendazole in standard solutions at a minimum concentration of 50 ng/mL. Furthermore, two sample preparation methods were compared for detecting thiabendazole in apple juice. As the direct detection method for SERS analysis failed to detect thiabendazole at levels below the maximum residue limit based on the Chinese standard (3000 ng/mL), the effects of main matrix components in apple juice on the detection of thiabendazole were further investigated. The results revealed that both sugars and organic acids in apple juice interfered with the SERS measurement to varying degrees. Consequently, we optimized the QuEChERS method for sample preparation and achieved a higher sensitivity with a minimum detectable concentration of 250 ng/mL, a limit of detection of 0.06 mg/L and the recoveries of spiked samples were ranged from 80.2 % to 108.6 %. This study demonstrated the feasibility of proposed SERS method for pesticide residue analysis, addressing the need for food safety monitoring.

更新日期:2023-07-21
down
wechat
bug