当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tailoring Interfacial Derivative for Lithium–Sulfur Pouch Cells with Ultra-Long Cycling Performance
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-07-20 , DOI: 10.1002/aenm.202301233 Yu Jiao 1 , Shuying Wang 2 , Yuhong Ma 2 , Mingjie Zhou 2 , Li Zhang 1 , Hao Zhang 1 , Tianyu Lei 2 , Yuli Di 1 , Chaoyi Yan 2 , Wei Chen 2 , Dongjiang Chen 2 , Jianwen Huang 2 , Yin Hu 2 , Yichao Yan 2
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-07-20 , DOI: 10.1002/aenm.202301233 Yu Jiao 1 , Shuying Wang 2 , Yuhong Ma 2 , Mingjie Zhou 2 , Li Zhang 1 , Hao Zhang 1 , Tianyu Lei 2 , Yuli Di 1 , Chaoyi Yan 2 , Wei Chen 2 , Dongjiang Chen 2 , Jianwen Huang 2 , Yin Hu 2 , Yichao Yan 2
Affiliation
The lithium–sulfur (Li–S) battery has been regarded as a promising alternative to lithium-ion battery due to its high theoretical specific capacity. While some efforts have been made in developing high-performance laboratory-scale coin cells, the relevant strategies cannot be readily transferred to a practical pouch cell format because of its poor cycles. Herein a derivative controlled liquid (DCL) electrolyte is demonstrated that contains 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide potassium salt and bistrifluoromethanesulfonimide lithium salt to allow the preferential salt decomposition on the surface of Li metal prior to the solvents. Such an electrolyte not only enables the enrichment of inorganic potassium fluoride and lithium fluoride in the solid electrolyte interface (SEI), but also suppresses the solvent consumption via preventing the electron-gaining of solvent molecules from the Li metal. As a result, the Li‒S pouch cellsenables a breakthrough from several tens of cycles (<40 cycles) to more than 200 stable cycles at a current of 300 mA per cell, demonstrating great potential for commercialization. This study indicates that inducing preferential decomposition of salts rather than solvents during the formation of the SEI could be a promising method to stabilize the lithium metal anode and enable the production of practical Li‒S pouch cells.
中文翻译:
为具有超长循环性能的锂硫软包电池定制界面衍生物
锂硫(Li-S)电池由于其高理论比容量而被认为是锂离子电池的有前途的替代品。尽管在开发高性能实验室规模纽扣电池方面已经做出了一些努力,但由于其循环性能较差,相关策略无法轻易转移到实用的软包电池形式。本文证明了一种导数控制液体(DCL)电解质,其含有1,1,2,2,3,3-六氟丙烷-1,3-二磺酰亚胺钾盐和双三氟甲磺酰亚胺锂盐,可以在锂金属表面优先进行盐分解在溶剂之前。这样的电解质不仅能够在固体电解质界面(SEI)中富集无机氟化钾和氟化锂,而且还通过防止溶剂分子从锂金属中获得电子来抑制溶剂消耗。因此,Li-S软包电池在每个电池300 mA的电流下实现了从几十个循环(<40个循环)到超过200个稳定循环的突破,展示了巨大的商业化潜力。这项研究表明,在 SEI 形成过程中诱导盐而不是溶剂的优先分解可能是稳定锂金属阳极并能够生产实用的 Li-S 软包电池的一种有前途的方法。
更新日期:2023-07-20
中文翻译:
为具有超长循环性能的锂硫软包电池定制界面衍生物
锂硫(Li-S)电池由于其高理论比容量而被认为是锂离子电池的有前途的替代品。尽管在开发高性能实验室规模纽扣电池方面已经做出了一些努力,但由于其循环性能较差,相关策略无法轻易转移到实用的软包电池形式。本文证明了一种导数控制液体(DCL)电解质,其含有1,1,2,2,3,3-六氟丙烷-1,3-二磺酰亚胺钾盐和双三氟甲磺酰亚胺锂盐,可以在锂金属表面优先进行盐分解在溶剂之前。这样的电解质不仅能够在固体电解质界面(SEI)中富集无机氟化钾和氟化锂,而且还通过防止溶剂分子从锂金属中获得电子来抑制溶剂消耗。因此,Li-S软包电池在每个电池300 mA的电流下实现了从几十个循环(<40个循环)到超过200个稳定循环的突破,展示了巨大的商业化潜力。这项研究表明,在 SEI 形成过程中诱导盐而不是溶剂的优先分解可能是稳定锂金属阳极并能够生产实用的 Li-S 软包电池的一种有前途的方法。