当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mo Single-Atom Nanozyme Anchored to the 2D N-Doped Carbon Film: Catalytic Mechanism, Visual Monitoring of Choline, and Evaluation of Intracellular ROS Generation
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-07-19 , DOI: 10.1021/acsami.3c04761 Qijun Sun 1 , Xiaoyu Xu 1 , Song Liu 1 , Xinzhao Wu 2 , Chenhui Yin 1 , Meng Wu 1 , Yuxue Chen 1 , Na Niu 1 , Ligang Chen 1 , Fuquan Bai 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-07-19 , DOI: 10.1021/acsami.3c04761 Qijun Sun 1 , Xiaoyu Xu 1 , Song Liu 1 , Xinzhao Wu 2 , Chenhui Yin 1 , Meng Wu 1 , Yuxue Chen 1 , Na Niu 1 , Ligang Chen 1 , Fuquan Bai 2
Affiliation
Single-atom nanozymes (SANs) have attracted great attention in constructing devices for instant biosensing due to their excellent stability and atom utilization. Here, Mo atoms were immobilized in 2D nitrogen-doped carbon films by cascade-anchored one-pot pyrolysis to obtain Mo single-atom nanozyme (Mo-SAN) with high atomic loading (4.79 wt %) and peroxidase-like activity. The coordination environment and enzyme-like activity mechanism of Mo-SAN were studied by combining synchrotron radiation and density functional theory. The strong oxophilicity of single-atom Mo makes the catalytic center more capable of transferring electrons to free radicals to selectively generate •OH in the presence of H2O2. Choline oxidase and Mo-SAN were used as signal opening unit and signal amplification unit, respectively. Combining the portability and visualization functions of smartphone and test strips, a paper-based visual sensing platform was constructed, which can accurately identify choline at a concentration of 0.5–35 μM with a limit of detection as low as 0.12 μM. The recovery of human serum samples was 96.4–102.2%, with an error of less than 5%. Furthermore, the potential of Mo-SAN to efficiently generate toxic •OH in tumor cells was intuitively confirmed. This work provides a technical and theoretical basis for designing highly active SANs and detecting neurological markers.
中文翻译:
锚定在二维 N 掺杂碳膜上的 Mo 单原子纳米酶:催化机制、胆碱的可视化监测以及细胞内 ROS 生成的评估
单原子纳米酶(SAN)由于其优异的稳定性和原子利用率,在构建即时生物传感设备方面引起了极大的关注。在此,通过级联锚定一锅热解将Mo原子固定在二维氮掺杂碳膜中,获得具有高原子负载量(4.79 wt%)和类过氧化物酶活性的Mo单原子纳米酶(Mo-SAN)。结合同步辐射和密度泛函理论研究了Mo-SAN的配位环境和类酶活性机制。单原子Mo的强亲氧性使得催化中心在H 2 O 2存在下更能够将电子转移给自由基选择性地生成· OH 。胆碱氧化酶和Mo-SAN分别用作信号开放单元和信号放大单元。结合智能手机和试纸的便携性和可视化功能,构建了纸基视觉传感平台,可以准确识别浓度为0.5-35μM的胆碱,检测限低至0.12μM。人血清样品回收率为96.4%~102.2%,误差小于5%。此外,直观地证实了Mo-SAN 在肿瘤细胞中有效产生有毒•· OH的潜力。该工作为设计高活性SANs和检测神经标志物提供了技术和理论基础。
更新日期:2023-07-19
中文翻译:
锚定在二维 N 掺杂碳膜上的 Mo 单原子纳米酶:催化机制、胆碱的可视化监测以及细胞内 ROS 生成的评估
单原子纳米酶(SAN)由于其优异的稳定性和原子利用率,在构建即时生物传感设备方面引起了极大的关注。在此,通过级联锚定一锅热解将Mo原子固定在二维氮掺杂碳膜中,获得具有高原子负载量(4.79 wt%)和类过氧化物酶活性的Mo单原子纳米酶(Mo-SAN)。结合同步辐射和密度泛函理论研究了Mo-SAN的配位环境和类酶活性机制。单原子Mo的强亲氧性使得催化中心在H 2 O 2存在下更能够将电子转移给自由基选择性地生成· OH 。胆碱氧化酶和Mo-SAN分别用作信号开放单元和信号放大单元。结合智能手机和试纸的便携性和可视化功能,构建了纸基视觉传感平台,可以准确识别浓度为0.5-35μM的胆碱,检测限低至0.12μM。人血清样品回收率为96.4%~102.2%,误差小于5%。此外,直观地证实了Mo-SAN 在肿瘤细胞中有效产生有毒•· OH的潜力。该工作为设计高活性SANs和检测神经标志物提供了技术和理论基础。