当前位置: X-MOL 学术Math. Models Methods Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Critical mass for Keller–Segel systems with supercritical nonlinear sensitivity
Mathematical Models and Methods in Applied Sciences ( IF 3.6 ) Pub Date : 2023-07-14 , DOI: 10.1142/s0218202523400079
Xuan Mao 1 , Yuxiang Li 1
Affiliation  

This paper is concerned with the following radially symmetric Keller–Segel systems with nonlinear sensitivity ut=Δu(u(1+u)α1v) and 0=ΔvΩudx+u, posed on Ω={xn:|x|<R}(n2) and subjected to homogeneous Neumann boundary conditions. It is well-known that 2n is the critical exponent of the systems in the sense that all solutions exist globally if α<2n and there exist finite-time blowup solutions if α>2n. Here we consider the supercritical case α2n and show a critical mass phenomenon. Precisely, we prove that there exists a critical mass mc:=mc(n,R,α) such that

(1)

for arbitrary nonincreasing nonnegative initial data u0(x)=u0(|x|) with Ωu0>mc and u0Ωu0, the corresponding solution blows up in finite time if α>2n, and if α=2n we can only prove that the solution blows up in finite time or infinite time;

(2)

for some nonincreasing nonnegative initial data with Ωu0<mc, the corresponding solutions are globally bounded.

Our results extend that of Winkler’s paper [M. Winkler, How unstable is spatial homogeneity in Keller–Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic–elliptic cases, Math. Ann. 373 (2019) 1237–1282], where he proved similar results for the system with α=1.



中文翻译:

具有超临界非线性灵敏度的 Keller-Segel 系统的临界质量

本文涉及以下具有非线性灵敏度的径向对称 Keller-Segel 系统t=Δ-1+α-1v0=Δv-ΩdX+,摆在Ω={Xεn:|X|<}n2并受到齐次诺依曼边界条件的影响。众所周知,2n是系统的关键指数,因为所有解决方案都存在于全球范围内,如果α<2n并且存在有限时间爆炸解,如果α>2n。这里我们考虑超临界情况α2n并表现出临界质量现象。准确地说,我们证明存在临界质量C:=Cn,,α这样

(1)

对于任意非增非负初始数据0X=0|X|Ω0>C0Ω0,相应的解在有限时间内爆炸,如果α>2n, 而如果α=2n我们只能证明解在有限时间内或无限时间内爆炸;

(2)

对于一些非递增非负初始数据Ω0<C,相应的解是全局有界的。

我们的结果扩展了 Winkler 的论文 [M. Winkler,凯勒-席格尔系统中的空间同质性有多不稳定?二维和更高维抛物线-椭圆情况下的新临界质量现象,数学。安.  373 (2019) 1237–1282],他证明了系统的类似结果α=1

更新日期:2023-07-14
down
wechat
bug