Mathematical Models and Methods in Applied Sciences ( IF 3.6 ) Pub Date : 2023-07-14 , DOI: 10.1142/s0218202523400079 Xuan Mao 1 , Yuxiang Li 1
This paper is concerned with the following radially symmetric Keller–Segel systems with nonlinear sensitivity and , posed on and subjected to homogeneous Neumann boundary conditions. It is well-known that is the critical exponent of the systems in the sense that all solutions exist globally if and there exist finite-time blowup solutions if . Here we consider the supercritical case and show a critical mass phenomenon. Precisely, we prove that there exists a critical mass such that
(1) | for arbitrary nonincreasing nonnegative initial data with and , the corresponding solution blows up in finite time if , and if we can only prove that the solution blows up in finite time or infinite time; | ||||
(2) | for some nonincreasing nonnegative initial data with , the corresponding solutions are globally bounded. |
Our results extend that of Winkler’s paper [M. Winkler, How unstable is spatial homogeneity in Keller–Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic–elliptic cases, Math. Ann. 373 (2019) 1237–1282], where he proved similar results for the system with .
中文翻译:
具有超临界非线性灵敏度的 Keller-Segel 系统的临界质量
本文涉及以下具有非线性灵敏度的径向对称 Keller-Segel 系统和,摆在并受到齐次诺依曼边界条件的影响。众所周知,是系统的关键指数,因为所有解决方案都存在于全球范围内,如果并且存在有限时间爆炸解,如果。这里我们考虑超临界情况并表现出临界质量现象。准确地说,我们证明存在临界质量这样
(1) | 对于任意非增非负初始数据和和,相应的解在有限时间内爆炸,如果, 而如果我们只能证明解在有限时间内或无限时间内爆炸; | ||||
(2) | 对于一些非递增非负初始数据,相应的解是全局有界的。 |
我们的结果扩展了 Winkler 的论文 [M. Winkler,凯勒-席格尔系统中的空间同质性有多不稳定?二维和更高维抛物线-椭圆情况下的新临界质量现象,数学。安. 373 (2019) 1237–1282],他证明了系统的类似结果。