当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Anammox Coupled with Photocatalyst for Enhanced Nitrogen Removal and the Activated Aerobic Respiration of Anammox Bacteria Based on cbb3-Type Cytochrome c Oxidase
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2023-07-18 , DOI: 10.1021/acs.est.3c02435 Li Zhang 1 , Tingjun Dong 1 , Jiachun Yang 2, 3 , Shiwei Hao 1 , Zaicheng Sun 4 , Yongzhen Peng 1
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2023-07-18 , DOI: 10.1021/acs.est.3c02435 Li Zhang 1 , Tingjun Dong 1 , Jiachun Yang 2, 3 , Shiwei Hao 1 , Zaicheng Sun 4 , Yongzhen Peng 1
Affiliation
This study introduced photogenerated electrons into the anammox system by coupling them to a g-C3N4 nanoparticle photocatalyst. A high nitrogen removal efficiency (94.25%) was achieved, exceeding the biochemical limit of 89% imposed by anammox stoichiometry. Photogenerated electrons boosted anammox metabolic activity by empowering key enzymes (NIR, HZS, and WLP-related proteins) and triggered rapid algal enrichment by enhancing the algal Calvin cycle, thus developing multiple anammox–algae synergistic nitrogen removal processes. Remarkably, the homologous expression of cbb3-type cytochrome c oxidase (CcO) in anammox bacteria was discovered and reported in this study for the first time. This conferred aerobic respiration capability to anammox bacteria and rendered them the principal oxygen consumer under 7.9–19.8 mg/L dissolved oxygen, originating from algal photosynthesis. Additionally, photogenerated electrons selectively targeted the cb1 complex and cbb3-type CcO as activation sites while mobilizing the RegA/B regulatory system to activate the expression of cbb3-type CcO. Furthermore, cbb3-type CcO blocked oxidative stress in anammox by depleting intracellular oxygen, a substrate for reactive oxygen species synthesis. This optimized the environmental sensitivity of anammox bacteria and maintained their high metabolic activity. This study expands our understanding of the physiological aptitudes of anammox bacteria and provides valuable insights into applying solar energy for enhanced wastewater treatment.
中文翻译:
基于cbb3型细胞色素c氧化酶的厌氧氨氧化与光触媒强化脱氮及激活厌氧氨氧化菌有氧呼吸
本研究通过将光生电子耦合到 gC 3 N 4纳米粒子光催化剂,将光生电子引入厌氧氨氧化系统。实现了高脱氮效率(94.25%),超过了厌氧氨氧化化学计量规定的89%的生化极限。光生电子通过增强关键酶(NIR、HZS和WLP相关蛋白)来增强厌氧氨氧化代谢活性,并通过增强藻类卡尔文循环触发藻类快速富集,从而开发出多种厌氧氨氧化-藻类协同脱氮过程。值得注意的是,本研究首次发现并报道了厌氧氨氧化菌中cbb3型细胞色素c氧化酶(CcO)的同源表达。这赋予了厌氧氨氧化细菌有氧呼吸能力,并使它们成为来自藻类光合作用的 7.9–19.8 mg/L 溶解氧的主要氧气消耗者。此外,光生电子选择性地将cb1复合物和cbb3型CcO作为激活位点,同时动员RegA/B调节系统来激活cbb3型CcO的表达。此外,cbb3 型 CcO 通过消耗细胞内氧(活性氧合成的底物)来阻断厌氧氨氧化中的氧化应激。这优化了厌氧氨氧化细菌的环境敏感性并保持了它们的高代谢活性。这项研究扩展了我们对厌氧氨氧化细菌生理能力的理解,并为应用太阳能加强废水处理提供了宝贵的见解。
更新日期:2023-07-18
中文翻译:
基于cbb3型细胞色素c氧化酶的厌氧氨氧化与光触媒强化脱氮及激活厌氧氨氧化菌有氧呼吸
本研究通过将光生电子耦合到 gC 3 N 4纳米粒子光催化剂,将光生电子引入厌氧氨氧化系统。实现了高脱氮效率(94.25%),超过了厌氧氨氧化化学计量规定的89%的生化极限。光生电子通过增强关键酶(NIR、HZS和WLP相关蛋白)来增强厌氧氨氧化代谢活性,并通过增强藻类卡尔文循环触发藻类快速富集,从而开发出多种厌氧氨氧化-藻类协同脱氮过程。值得注意的是,本研究首次发现并报道了厌氧氨氧化菌中cbb3型细胞色素c氧化酶(CcO)的同源表达。这赋予了厌氧氨氧化细菌有氧呼吸能力,并使它们成为来自藻类光合作用的 7.9–19.8 mg/L 溶解氧的主要氧气消耗者。此外,光生电子选择性地将cb1复合物和cbb3型CcO作为激活位点,同时动员RegA/B调节系统来激活cbb3型CcO的表达。此外,cbb3 型 CcO 通过消耗细胞内氧(活性氧合成的底物)来阻断厌氧氨氧化中的氧化应激。这优化了厌氧氨氧化细菌的环境敏感性并保持了它们的高代谢活性。这项研究扩展了我们对厌氧氨氧化细菌生理能力的理解,并为应用太阳能加强废水处理提供了宝贵的见解。