当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hetero-Packing Nanostructures of Iron (III) Fluoride Nanocomposite Cathode for High-Rate and Long-Life Rechargeable Lithium-Ion Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-07-14 , DOI: 10.1002/aenm.202301680
Tuxiang Guan 1 , Lei Zhao 1 , Yu Zhou 1 , Xinming Qiu 1 , Jian Wu 1 , Guan Wu 2 , Ningzhong Bao 1
Affiliation  

High-performance metal fluoride cathodes are crucial to design ultrahigh-capacity lithium metal batteries for taking part in the next-generation energy storage market. However, their insulating nature and sluggish reaction kinetics result in voltage hysteresis, low-rate capability, and rapid capacity degradation. Herein, a generalizable one-step melt synthesis approach is reported to construct hetero-packing nanostructures of FeF3@C-Asphalt nanocomposites, where ultrafine FeF3 nanoparticles are homogeneously covered by a high conductive carbon framework. By the electrochemical kinetics calculation and multiphysics simulations, this FeF3@C-Asphalt nanocomposites consist of ultrafine nanoparticles and a constrained carbon framework, offering a high tap density (1.8 g cm−3), significantly improved conductivity, and enhanced charge pathways, and thereby enabling the fast electron transport, rapid ion migration, depressed electrode internal stress, and mitigated volume expansion. As a result, the optimized FeF3@C-Asphalt cathode delivers a high capacity of 517 mAh g−1, high cyclic stability of 87.5% after 1000 cycles under 5 A g−1 (10 C), and excellent capacity retention of 77% from 0.5 A g−1 to 10 A g−1 (20 C, 250 mAh g−1). The work provides an easy-to-operate and low-cost approach to accomplish high cyclic stability metal fluoride-lithium batteries, which will guide the development of fast-charging ultrahigh-capacity cathode materials for the new energy industry.

中文翻译:

用于高倍率、长寿命可充电锂离子电池的异质堆积纳米结构氟化铁纳米复合材料

高性能金属氟化物正极对于设计参与下一代储能市场的超高容量锂金属电池至关重要。然而,它们的绝缘性质和缓慢的反应动力学导致电压滞后、低倍率能力和快速容量衰减。在此,报道了一种可推广的一步熔融合成方法来构建 FeF 3 @C-沥青纳米复合材料的异质堆积纳米结构,其中超细 FeF 3纳米颗粒均匀地被高导电碳框架覆盖。通过电化学动力学计算和多物理场模拟,该FeF 3@C-Asphalt纳米复合材料由超细纳米粒子和受限碳骨架组成,具有高振实密度(1.8 g cm -3)、显着提高的电导率和增强的电荷路径,从而实现快速电子传输、快速离子迁移、抑制电极内应力,并减轻体积膨胀。结果,优化的FeF 3 @C-沥青正极具有517 mAh g −1的高容量,5 A g −1 (10 C)下循环1000次后循环稳定性高达87.5% ,并且容量保持率优异,为77 % 从 0.5 A g −1到 10 A g −1 (20 C, 250 mAh g −1)。该工作提供了一种易于操作且低成本的方法来实现高循环稳定性金属氟化物锂电池,这将指导新能源行业快速充电超高容量正极材料的开发。
更新日期:2023-07-14
down
wechat
bug