当前位置:
X-MOL 学术
›
Chin. J. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Facile Modification on Buried Interface for Highly Efficient and Stable FASn0.5Pb0.5I3 Perovskite Solar Cells with NiOx Hole-Transport layers†
Chinese Journal of Chemistry ( IF 5.5 ) Pub Date : 2023-07-15 , DOI: 10.1002/cjoc.202300245
Hui Zhang 1 , Yuan Zhou 1 , Tonghui Guo 1 , Xiang Zhang 1 , Zhenkun Zhu 1 , Junjun Jin 1 , Xiaxia Cui 1 , Dan Zhang 1 , Zhen Wang 1, 2 , Lin Li 1 , Nai Wang 1 , Guanqi Tang 3 , Qidong Tai 1
Chinese Journal of Chemistry ( IF 5.5 ) Pub Date : 2023-07-15 , DOI: 10.1002/cjoc.202300245
Hui Zhang 1 , Yuan Zhou 1 , Tonghui Guo 1 , Xiang Zhang 1 , Zhenkun Zhu 1 , Junjun Jin 1 , Xiaxia Cui 1 , Dan Zhang 1 , Zhen Wang 1, 2 , Lin Li 1 , Nai Wang 1 , Guanqi Tang 3 , Qidong Tai 1
Affiliation
![]() |
Formamidinium (FA)-based Sn-Pb perovskite solar cells (FAPb0.5Sn0.5I3 PSCs) with ideal bandgap and impressive thermal stability have caught enormous attention recently. However, it still suffers from the challenge of realizing high efficiency due to the surface imperfections of the transport materials and the energy-level mismatch between functional contacts. Herein, it is demonstrated that the modification on buried interface with alkali metal salts is a viable strategy to alleviate these issues. We systematically investigate the role of three alkali metal bromide salts (NaBr, KBr, CsBr) by burying them between the NiOx hole transport layer (HTL) and the perovskite light-absorbing layer, which can effectively passivate interface defects, improve energy-level matching and release the internal residual strain in perovskite layers. The device with CsBr buffer layer exhibits the best power conversion efficiency (PCE) approaching 20%, which is one of the highest efficiencies for FA-based Sn-Pb PSCs employing NiOx HTLs. Impressively, the long-term storage stability of the unencapsulated device is also greatly boosted. Our work provides an efficient strategy to prepare desired FA-based ideal-bandgap Sn-Pb PSCs which could be applied in tandem solar cells.
中文翻译:
轻松修改埋入界面,实现具有 NiOx 空穴传输层的高效稳定 FASn0.5Pb0.5I3 钙钛矿太阳能电池†
基于甲脒(FA)的Sn-Pb钙钛矿太阳能电池(FAPb 0.5 Sn 0.5 I 3 PSC)具有理想的带隙和令人印象深刻的热稳定性,最近引起了极大的关注。然而,由于传输材料的表面缺陷和功能接触之间的能级不匹配,它仍然面临着实现高效率的挑战。本文证明,用碱金属盐对埋入界面进行改性是缓解这些问题的可行策略。我们系统地研究了三种碱金属溴化物盐(NaBr、KBr、CsBr)的作用,通过将它们埋在NiO x空穴传输层(HTL)和钙钛矿光吸收层之间,可以有效钝化界面缺陷,提高能级匹配并释放钙钛矿层中的内部残余应变。具有 CsBr 缓冲层的器件表现出接近 20% 的最佳功率转换效率 (PCE),这是采用 NiO x HTL 的基于 FA 的 Sn-Pb PSC 的最高效率之一。令人印象深刻的是,未封装器件的长期存储稳定性也大大提高。我们的工作提供了一种有效的策略来制备所需的基于 FA 的理想带隙 Sn-Pb PSC,该 PSC 可应用于串联太阳能电池。
更新日期:2023-07-15

中文翻译:

轻松修改埋入界面,实现具有 NiOx 空穴传输层的高效稳定 FASn0.5Pb0.5I3 钙钛矿太阳能电池†
基于甲脒(FA)的Sn-Pb钙钛矿太阳能电池(FAPb 0.5 Sn 0.5 I 3 PSC)具有理想的带隙和令人印象深刻的热稳定性,最近引起了极大的关注。然而,由于传输材料的表面缺陷和功能接触之间的能级不匹配,它仍然面临着实现高效率的挑战。本文证明,用碱金属盐对埋入界面进行改性是缓解这些问题的可行策略。我们系统地研究了三种碱金属溴化物盐(NaBr、KBr、CsBr)的作用,通过将它们埋在NiO x空穴传输层(HTL)和钙钛矿光吸收层之间,可以有效钝化界面缺陷,提高能级匹配并释放钙钛矿层中的内部残余应变。具有 CsBr 缓冲层的器件表现出接近 20% 的最佳功率转换效率 (PCE),这是采用 NiO x HTL 的基于 FA 的 Sn-Pb PSC 的最高效率之一。令人印象深刻的是,未封装器件的长期存储稳定性也大大提高。我们的工作提供了一种有效的策略来制备所需的基于 FA 的理想带隙 Sn-Pb PSC,该 PSC 可应用于串联太阳能电池。
