Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-07-14 , DOI: 10.1016/j.cej.2023.144717 Zilong Zhao , Yatao Ren , Shuyu Qi , Zigong Ning , Xing Wang , Wenyi Dong , Hongjie Wang
Heavy metal complexes pose a challenge in terms of their resistance to removal due to their stable and intricate structure. In this study, we explored the utilization of Fe and N co-doped biochar derived from rice husk (Fe-N-RHBC) as catalytic particle electrodes in a three-dimensional electro-Fenton (3D-EF) system for the decomplexation and removal of a model pollutant, Ni-EDTA. The characterization analysis and comparison of catalytic activities confirmed the beneficial effects of Fe and N co-doping on various aspects, such as the types of active sites, interfacial electron transfer properties, and H2O2 decomposition capacity. Compared to other investigated oxidation systems, the 3D-EF process demonstrated rapid removal of Ni-EDTA within the initial minute, with a maximum H2O2 utilization of 99.1% after 30 min. The prepared catalytic particle electrodes exhibited high stability and catalytic capacity even after three consecutive cycles. Throughout the reaction, several processes, including anode oxidation, particle electrode polarization, catalysis, and adsorption of Fe-N-RHBC, as well as cathodic electro-deposition, synergistically contributed to the treatment of Ni-EDTA. The surface-bound O2•− radicals and 1O2 generated by the Fe-N-RHBC catalytic particle electrode played a crucial role in the decomplexation and removal of Ni-EDTA. Building upon these findings, we further proposed potential mechanisms for the removal of Ni-EDTA in the 3D-EF system using the Fe-N-RHBC catalytic particle electrode.
中文翻译:
使用 Fe-N 掺杂生物炭作为催化颗粒电极,通过三维电芬顿过程增强 Ni-EDTA 的去除
重金属络合物由于其稳定而复杂的结构,在去除阻力方面提出了挑战。在这项研究中,我们探索了利用稻壳中的铁和氮共掺杂生物炭(Fe-N-RHBC)作为三维电芬顿(3D-EF)系统中的催化颗粒电极来解络和去除模型污染物 Ni-EDTA。表征分析和催化活性比较证实了Fe和N共掺杂对活性位点类型、界面电子传递性能和H 2 O 2 分解能力等各个方面的有益影响。与其他研究的氧化系统相比,3D-EF 工艺证明可以在最初的一分钟内快速去除 Ni-EDTA,并具有最大的 H30分钟后2 O 2利用率为99.1%。所制备的催化颗粒电极即使在连续三个循环后也表现出较高的稳定性和催化能力。在整个反应过程中,阳极氧化、颗粒电极极化、Fe-N-RHBC的催化和吸附以及阴极电沉积等几个过程协同促进了Ni-EDTA的处理。表面结合的 O 2 •−自由基和1 O 2Fe-N-RHBC催化颗粒电极产生的Ni-EDTA的解络和去除起到了至关重要的作用。基于这些发现,我们进一步提出了使用 Fe-N-RHBC 催化颗粒电极去除 3D-EF 系统中 Ni-EDTA 的潜在机制。