当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Intercrystalline Channels at Subnanometer Scale for Precise Molecular Nanofiltration
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-07-12 , DOI: 10.1021/jacs.3c02711 Dongchen Shi 1 , He Li 1 , Xin Yu 1 , Zhaoqiang Zhang 1 , Yi Di Yuan 1 , Weidong Fan 1 , Hongye Yuan 1 , Yunpan Ying 1 , Hao Yang 1 , Chuning Shang 1 , Joseph Imbrogno 2 , Dan Zhao 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-07-12 , DOI: 10.1021/jacs.3c02711 Dongchen Shi 1 , He Li 1 , Xin Yu 1 , Zhaoqiang Zhang 1 , Yi Di Yuan 1 , Weidong Fan 1 , Hongye Yuan 1 , Yunpan Ying 1 , Hao Yang 1 , Chuning Shang 1 , Joseph Imbrogno 2 , Dan Zhao 1
Affiliation
Membrane-based technologies can provide cost-effective and energy-efficient methods for various separation processes. The key goal is to develop materials with uniform, tunable, and well-defined subnanometer-scale channels. Suitable membrane materials should have high selectivity and permeance and can be manufactured in a robust and scalable fashion. Here, we report the construction of sub-1 nm intercrystalline channels with such characteristics and elucidate their transport properties. These channels are formed by assembling 3D aluminum formate crystals during the amorphous-to-crystalline transformation process. By controlling the transformation time, the channel size can be tuned from the macroscopic scale to nanometer scale. The resulting membranes exhibit tailored selectivity and permeance, with molecular weight cutoffs ranging from around 300 Da to approximately 650 Da, and ethanol permeance ranging from 0.8 to 22.0 L m–2 h–1 bar–1. We further show that liquid flow through these channels changes from viscosity-dominated continuum flow to subcontinuum flow, which can be described by a modified Hagen–Poiseuille model. Our strategy provides a new scalable platform for applications that commonly exploit nanoscale mass transport.
中文翻译:
用于精确分子纳滤的亚纳米级晶间通道
基于膜的技术可以为各种分离过程提供经济有效且节能的方法。主要目标是开发具有均匀、可调且明确的亚纳米级通道的材料。合适的膜材料应具有高选择性和渗透性,并且可以以稳健且可扩展的方式制造。在这里,我们报告了具有此类特性的亚 1 nm 晶间通道的构造,并阐明了它们的传输特性。这些通道是通过在非晶态到晶态转变过程中组装 3D 甲酸铝晶体而形成的。通过控制转变时间,通道尺寸可以从宏观尺度调整到纳米尺度。所得膜表现出定制的选择性和渗透性,截留分子量范围为约 300 Da 至约 650 Da,乙醇渗透性范围为 0.8 至 22.0 L m –2 h –1 bar –1。我们进一步表明,通过这些通道的液体流动从粘度主导的连续流转变为亚连续流,这可以通过修改后的哈根-泊肃叶模型来描述。我们的策略为通常利用纳米级质量传输的应用提供了一个新的可扩展平台。
更新日期:2023-07-12
中文翻译:
用于精确分子纳滤的亚纳米级晶间通道
基于膜的技术可以为各种分离过程提供经济有效且节能的方法。主要目标是开发具有均匀、可调且明确的亚纳米级通道的材料。合适的膜材料应具有高选择性和渗透性,并且可以以稳健且可扩展的方式制造。在这里,我们报告了具有此类特性的亚 1 nm 晶间通道的构造,并阐明了它们的传输特性。这些通道是通过在非晶态到晶态转变过程中组装 3D 甲酸铝晶体而形成的。通过控制转变时间,通道尺寸可以从宏观尺度调整到纳米尺度。所得膜表现出定制的选择性和渗透性,截留分子量范围为约 300 Da 至约 650 Da,乙醇渗透性范围为 0.8 至 22.0 L m –2 h –1 bar –1。我们进一步表明,通过这些通道的液体流动从粘度主导的连续流转变为亚连续流,这可以通过修改后的哈根-泊肃叶模型来描述。我们的策略为通常利用纳米级质量传输的应用提供了一个新的可扩展平台。