Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Chitin Nanofibrils from Fungi for Hierarchical Gel Polymer Electrolytes for Transient Zinc-Ion Batteries with Stable Zn Electrodeposition
Small ( IF 13.0 ) Pub Date : 2023-07-11 , DOI: 10.1002/smll.202303394 Diego Ruiz 1 , Veronica F Michel 1 , Markus Niederberger 1 , Erlantz Lizundia 2, 3
Small ( IF 13.0 ) Pub Date : 2023-07-11 , DOI: 10.1002/smll.202303394 Diego Ruiz 1 , Veronica F Michel 1 , Markus Niederberger 1 , Erlantz Lizundia 2, 3
Affiliation
Rechargeable batteries play an integral role toward carbon neutrality. Environmentally sustainable batteries should consider the trade-offs between material renewability, processability, thermo-mechanical and electrochemical performance, as well as transiency. To address this dilemma, we follow circular economy principles to fabricate fungal chitin nanofibril (ChNF) gel polymer electrolytes (GPEs) for zinc-ion batteries. These biocolloids are physically entangled into hierarchical hydrogels with specific surface areas of 49.5 m2·g−1. Ionic conductivities of 54.1 mS·cm−1 and a Zn2+ transference number of 0.468 are reached, outperforming conventional non-renewable/non-biodegradable glass microfibre separator–liquid electrolyte pairs. Enabled by its mechanically elastic properties and large water uptake, a stable Zn electrodeposition in symmetric Zn|Zn configuration with a lifespan above 600 h at 9.5 mA·cm−2 is obtained. At 100 mA·g−1, the discharge capacity of Zn/α-MnO2 full cells increases above 500 cycles when replacing glass microfiber separators with ChNF GPEs, while the rate performance remains comparable to glass microfiber separators. To make the battery completely transient, the metallic current collectors are replaced by biodegradable polyester/carbon black composites undergoing degradation in water at 70 °C. This work demonstrates the applicability of bio-based materials to fabricate green and electrochemically competitive batteries with potential applications in sustainable portable electronics, or biomedicine.
中文翻译:
来自真菌的几丁质纳米原纤维用于具有稳定锌电沉积的瞬态锌离子电池的分层凝胶聚合物电解质
可充电电池在实现碳中和方面发挥着不可或缺的作用。环境可持续电池应考虑材料可再生性、可加工性、热机械和电化学性能以及瞬态性之间的权衡。为了解决这一困境,我们遵循循环经济原理来制造用于锌离子电池的真菌几丁质纳米纤维(ChNF)凝胶聚合物电解质(GPE)。这些生物胶体物理缠结成比表面积为49.5 m 2 ·g -1的分层水凝胶。离子电导率达到54.1 mS·cm -1,Zn 2+迁移数达到0.468,优于传统的不可再生/不可生物降解的玻璃微纤维隔膜-液体电解质对。由于其机械弹性特性和大的吸水性,获得了对称Zn|Zn构型的稳定Zn电沉积,在9.5 mA·cm -2下寿命超过600小时。在100 mA·g -1下,当用ChNF GPE替换玻璃微纤维隔膜时,Zn/α-MnO 2全电池的放电容量增加了500次以上,而倍率性能仍然与玻璃微纤维隔膜相当。为了使电池完全瞬态,金属集电器被可生物降解的聚酯/炭黑复合材料取代,该复合材料在 70°C 的水中会发生降解。这项工作证明了生物基材料可用于制造绿色且具有电化学竞争力的电池,并在可持续便携式电子产品或生物医学中具有潜在应用。
更新日期:2023-07-11
中文翻译:
来自真菌的几丁质纳米原纤维用于具有稳定锌电沉积的瞬态锌离子电池的分层凝胶聚合物电解质
可充电电池在实现碳中和方面发挥着不可或缺的作用。环境可持续电池应考虑材料可再生性、可加工性、热机械和电化学性能以及瞬态性之间的权衡。为了解决这一困境,我们遵循循环经济原理来制造用于锌离子电池的真菌几丁质纳米纤维(ChNF)凝胶聚合物电解质(GPE)。这些生物胶体物理缠结成比表面积为49.5 m 2 ·g -1的分层水凝胶。离子电导率达到54.1 mS·cm -1,Zn 2+迁移数达到0.468,优于传统的不可再生/不可生物降解的玻璃微纤维隔膜-液体电解质对。由于其机械弹性特性和大的吸水性,获得了对称Zn|Zn构型的稳定Zn电沉积,在9.5 mA·cm -2下寿命超过600小时。在100 mA·g -1下,当用ChNF GPE替换玻璃微纤维隔膜时,Zn/α-MnO 2全电池的放电容量增加了500次以上,而倍率性能仍然与玻璃微纤维隔膜相当。为了使电池完全瞬态,金属集电器被可生物降解的聚酯/炭黑复合材料取代,该复合材料在 70°C 的水中会发生降解。这项工作证明了生物基材料可用于制造绿色且具有电化学竞争力的电池,并在可持续便携式电子产品或生物医学中具有潜在应用。