Frontiers of Chemical Science and Engineering ( IF 4.3 ) Pub Date : 2023-06-28 , DOI: 10.1007/s11705-023-2335-7 Pengcheng Deng , Shiyi Feng , Canhui Lu , Zehang Zhou
Electromagnetic interference pollution has raised urgent demand for the development of electromagnetic interference shielding materials. Transition metal carbides (MXenes) with excellent conductivity have shown great potential in electromagnetic interference (EMI) shielding materials, while the poor mechanical strength, flexibility, and structural stability greatly limit their further applications. Here, cellulose nanofibers and sodium alginate are incorporated with MXene nanosheets as flexible matrices to construct strong and flexible mussel-like layered MXene/Cellulose nanofiber/Sodium Alginate composite films, and nickel ions are further introduced to induce metal coordination crosslinking of alginate units. Benefited from the dual-crosslinked network structure of hydrogen bonding and metal coordination, the tensile strength, Young’s modulus, and toughness of the MXene/cellulose nanofiber/nickel alginate composite film are significantly increased. After subsequent reduction by ascorbic acid, excess nickel ions are reduced to nickel nanoparticles and uniformly dispersed within the highly conductive composite film, which further improved its hysteresis loss effect toward the incident electromagnetic waves. Consequently, the MXene/cellulose nanofiber/nickel alginate-Ni composite film presents a considerably enhanced electromagnetic interference shielding effectiveness (47.17 dB) at a very low thickness of 29 µm. This study proposes a feasible dual-crosslinking and subsequent reduction strategy to synergistically enhance the mechanical properties and electromagnetic interference shielding performance of MXene-based composite materials.
中文翻译:
双交联MXene/纤维素纳米纤维/海藻酸镍薄膜,改善机械性能和电磁干扰屏蔽性能
电磁干扰污染对电磁干扰屏蔽材料的发展提出了迫切的需求。具有优异导电性的过渡金属碳化物(MXenes)在电磁干扰(EMI)屏蔽材料中显示出巨大的潜力,但较差的机械强度、柔韧性和结构稳定性极大地限制了其进一步应用。在此,将纤维素纳米纤维和海藻酸钠与MXene纳米片作为柔性基质结合,构建坚固且柔韧的贻贝状层状MXene/纤维素纳米纤维/海藻酸钠复合膜,并进一步引入镍离子以诱导海藻酸盐单元的金属配位交联。得益于氢键和金属配位的双交联网络结构,拉伸强度、杨氏模量、MXene/纤维素纳米纤维/海藻酸镍复合膜的韧性显着提高。经过抗坏血酸的后续还原,多余的镍离子被还原为镍纳米颗粒并均匀分散在高导电复合膜内,进一步改善了其对入射电磁波的磁滞损耗效应。因此,MXene/纤维素纳米纤维/海藻酸镍-Ni复合薄膜在29 µm的极薄厚度下呈现出显着增强的电磁干扰屏蔽效能(47.17 dB)。本研究提出了一种可行的双交联和后续还原策略,以协同增强MXene基复合材料的机械性能和电磁干扰屏蔽性能。经过抗坏血酸的后续还原,多余的镍离子被还原为镍纳米颗粒并均匀分散在高导电复合膜内,进一步改善了其对入射电磁波的磁滞损耗效果。因此,MXene/纤维素纳米纤维/海藻酸镍-Ni复合薄膜在29 µm的极薄厚度下呈现出显着增强的电磁干扰屏蔽效能(47.17 dB)。本研究提出了一种可行的双交联和后续还原策略,以协同增强MXene基复合材料的机械性能和电磁干扰屏蔽性能。经过抗坏血酸的后续还原,多余的镍离子被还原为镍纳米颗粒并均匀分散在高导电复合膜内,进一步改善了其对入射电磁波的磁滞损耗效果。因此,MXene/纤维素纳米纤维/海藻酸镍-Ni复合薄膜在29 µm的极薄厚度下呈现出显着增强的电磁干扰屏蔽效能(47.17 dB)。本研究提出了一种可行的双交联和后续还原策略,以协同增强MXene基复合材料的机械性能和电磁干扰屏蔽性能。多余的镍离子被还原成镍纳米颗粒并均匀分散在高导电复合膜内,进一步改善了其对入射电磁波的磁滞损耗效应。因此,MXene/纤维素纳米纤维/海藻酸镍-Ni复合薄膜在29 µm的极薄厚度下呈现出显着增强的电磁干扰屏蔽效能(47.17 dB)。本研究提出了一种可行的双交联和后续还原策略,以协同增强MXene基复合材料的机械性能和电磁干扰屏蔽性能。多余的镍离子被还原成镍纳米颗粒并均匀分散在高导电复合膜内,进一步改善了其对入射电磁波的磁滞损耗效应。因此,MXene/纤维素纳米纤维/海藻酸镍-Ni复合薄膜在29 µm的极薄厚度下呈现出显着增强的电磁干扰屏蔽效能(47.17 dB)。本研究提出了一种可行的双交联和后续还原策略,以协同增强MXene基复合材料的机械性能和电磁干扰屏蔽性能。MXene/纤维素纳米纤维/海藻酸镍-Ni复合薄膜在29微米的极薄厚度下呈现出显着增强的电磁干扰屏蔽效能(47.17分贝)。本研究提出了一种可行的双交联和后续还原策略,以协同增强MXene基复合材料的机械性能和电磁干扰屏蔽性能。MXene/纤维素纳米纤维/海藻酸镍-Ni复合薄膜在29微米的极薄厚度下呈现出显着增强的电磁干扰屏蔽效能(47.17分贝)。本研究提出了一种可行的双交联和后续还原策略,以协同增强MXene基复合材料的机械性能和电磁干扰屏蔽性能。