当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Asymmetric N, P-Coordinated Single-Atomic Fe Sites with Fe2P Nanoclusters/Nanoparticles on Porous Carbon Nanosheets for Highly Efficient Oxygen Electroreduction
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-07-10 , DOI: 10.1002/aenm.202301223
Heng Liu 1 , Luozhen Jiang 2 , Yanyan Sun 3 , Javid Khan 1 , Bin Feng 1 , Jiamin Xiao 1 , Handong Zhang 1 , Haijiao Xie 4 , Lina Li 2 , Shuangyin Wang 5 , Lei Han 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-07-10 , DOI: 10.1002/aenm.202301223
Heng Liu 1 , Luozhen Jiang 2 , Yanyan Sun 3 , Javid Khan 1 , Bin Feng 1 , Jiamin Xiao 1 , Handong Zhang 1 , Haijiao Xie 4 , Lina Li 2 , Shuangyin Wang 5 , Lei Han 1
Affiliation
![]() |
Disrupting the symmetrical electron distribution of single-atomic Fe sites is proposed as an effective strategy for improving the intrinsic activity in the oxygen reduction reaction (ORR). Herein asymmetric N, P-coordinated single-atomic Fe sites with Fe2P nanoclusters/nanoparticles on porous carbon nanosheets (FePNC) are constructed by a soft-template self-sacrificing pyrolysis. The synchrotron X-ray absorption spectroscopy confirms the coexistence of FeN3P1 moieties by the coordination of Fe atom with three nitrogen atoms and one phosphorus atom, and a small amount of Fe2P nanoclusters/nanoparticles. Benefiting from the unique asymmetric electronic and geometric configurations, the resultant FePNC catalyst exhibits excellent ORR activity with half-wave potential of 0.76 V (0.5 m H2SO4) and 0.90 V (0.1 m KOH), and good Zn–air battery performance. Theoretical analysis reveals that the synergistic effect of P coordination and Fe2P nanoclusters induces asymmetrical electron redistribution of single-atomic Fe sites and thus optimize the absorption strength toward the ORR intermediates, which contribute to the improved ORR activity.
中文翻译:
多孔碳纳米片上具有 Fe2P 纳米团簇/纳米粒子的不对称 N、P 配位单原子 Fe 位点,用于高效氧电还原
提出破坏单原子 Fe 位点的对称电子分布作为提高氧还原反应(ORR)本征活性的有效策略。本文通过软模板自牺牲热解构建了多孔碳纳米片(FePNC)上具有Fe 2 P纳米团簇/纳米颗粒的不对称N、P配位单原子Fe位点。同步加速器X射线吸收光谱证实了Fe原子与3个氮原子和1个磷原子的配位以及少量Fe 2的FeN 3 P 1部分的共存P纳米团簇/纳米颗粒。受益于独特的不对称电子和几何构型,所得的FePNC催化剂表现出优异的ORR活性,半波电位为0.76 V(0.5 m H 2 SO 4)和0.90 V(0.1 m KOH),以及良好的锌空气电池性能。理论分析表明,P配位和Fe 2 P纳米团簇的协同效应会诱导单原子Fe位点的不对称电子重新分布,从而优化对ORR中间体的吸收强度,从而有助于提高ORR活性。
更新日期:2023-07-10
中文翻译:

多孔碳纳米片上具有 Fe2P 纳米团簇/纳米粒子的不对称 N、P 配位单原子 Fe 位点,用于高效氧电还原
提出破坏单原子 Fe 位点的对称电子分布作为提高氧还原反应(ORR)本征活性的有效策略。本文通过软模板自牺牲热解构建了多孔碳纳米片(FePNC)上具有Fe 2 P纳米团簇/纳米颗粒的不对称N、P配位单原子Fe位点。同步加速器X射线吸收光谱证实了Fe原子与3个氮原子和1个磷原子的配位以及少量Fe 2的FeN 3 P 1部分的共存P纳米团簇/纳米颗粒。受益于独特的不对称电子和几何构型,所得的FePNC催化剂表现出优异的ORR活性,半波电位为0.76 V(0.5 m H 2 SO 4)和0.90 V(0.1 m KOH),以及良好的锌空气电池性能。理论分析表明,P配位和Fe 2 P纳米团簇的协同效应会诱导单原子Fe位点的不对称电子重新分布,从而优化对ORR中间体的吸收强度,从而有助于提高ORR活性。