当前位置:
X-MOL 学术
›
Inorg. Chem. Front.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Significantly improved energy storage performances of K0.5Na0.5NbO3 lead-free ceramics via a composition optimization strategy
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2023-07-09 , DOI: 10.1039/d3qi00676j Minquan Wang 1 , Ying Lin 1 , Qibin Yuan 2 , Miao Zhang 3 , Yiwen Yu 4 , Fei Yan 5 , Haibo Yang 1
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2023-07-09 , DOI: 10.1039/d3qi00676j Minquan Wang 1 , Ying Lin 1 , Qibin Yuan 2 , Miao Zhang 3 , Yiwen Yu 4 , Fei Yan 5 , Haibo Yang 1
Affiliation
Ceramic dielectric materials for energy storage have been widely investigated because of the superior advantages of a rapid charge/discharge speed and ultra-high power density. However, there are no significant breakthroughs in integrative energy storage density and efficiency improvements. In this work, a composition optimization scheme for boosting the synergistic energy storage performances of K0.5Na0.5NbO3 (KNN)-based ceramics has been proposed, namely diminishing the grain size to the sub-micron scale for enhancing the breakdown strength (BDS) and generating nanodomains for reducing the remanent polarization (Pr) by incorporating the Bi3+ ion and (Mg2/3Ta1/3)3+ multiple ions into the A-site and B-site of the KNN matrix. As a result, it is confirmed that an ultrahigh recoverable energy storage density (Wr) of 6.14 J cm−3 and a high energy storage efficiency (η) of 87% are realized simultaneously for the (1 − x)K0.5Na0.5NbO3–xBi(Mg2/3Ta1/3)O3 (KNN–BMT) ceramics at x = 0.15 under 720 kV cm−1, which surpass most other reported lead-free ceramics. Moreover, the outstanding thermal and frequency stability associated with variation rates of Wr and η below 10% is verified. All these merits indicate that the doped Bi(Mg2/3Ta1/3)O3 component leads to optimized energy storage performances. This work may attract significant attention in exploring ceramic dielectric capacitors with excellent properties for energy storage applications.
中文翻译:
通过成分优化策略显着提高K0.5Na0.5NbO3无铅陶瓷的储能性能
用于储能的陶瓷介电材料由于具有快速充放电速度和超高功率密度的优越优点而受到广泛的研究。然而,在综合储能密度和效率提升方面尚未取得重大突破。在这项工作中,提出了一种提高K 0.5 Na 0.5 NbO 3 (KNN)基陶瓷协同储能性能的成分优化方案,即将晶粒尺寸减小到亚微米级以提高击穿强度(BDS )并通过掺入 Bi 3+离子和(Mg 2/3 Ta1/3 ) 3+多个离子进入KNN矩阵的A位和B位。结果证实, (1 − x )K 0.5 Na 0.5同时实现了6.14 J cm -3的超高可恢复储能密度( W r )和87%的高储能效率( η )。 NbO 3 – x Bi(Mg 2/3 Ta 1/3 )O 3 (KNN–BMT) 陶瓷, x = 0.15,720 kV cm −1,超过了大多数其他报道的无铅陶瓷。此外,还验证了与低于 10%的W r和η变化率相关的出色热稳定性和频率稳定性。所有这些优点表明,掺杂的Bi(Mg 2/3 Ta 1/3 )O 3组分导致优化的能量存储性能。这项工作可能会在探索用于储能应用的具有优异性能的陶瓷介电电容器方面引起人们的极大关注。
更新日期:2023-07-10
中文翻译:
通过成分优化策略显着提高K0.5Na0.5NbO3无铅陶瓷的储能性能
用于储能的陶瓷介电材料由于具有快速充放电速度和超高功率密度的优越优点而受到广泛的研究。然而,在综合储能密度和效率提升方面尚未取得重大突破。在这项工作中,提出了一种提高K 0.5 Na 0.5 NbO 3 (KNN)基陶瓷协同储能性能的成分优化方案,即将晶粒尺寸减小到亚微米级以提高击穿强度(BDS )并通过掺入 Bi 3+离子和(Mg 2/3 Ta1/3 ) 3+多个离子进入KNN矩阵的A位和B位。结果证实, (1 − x )K 0.5 Na 0.5同时实现了6.14 J cm -3的超高可恢复储能密度( W r )和87%的高储能效率( η )。 NbO 3 – x Bi(Mg 2/3 Ta 1/3 )O 3 (KNN–BMT) 陶瓷, x = 0.15,720 kV cm −1,超过了大多数其他报道的无铅陶瓷。此外,还验证了与低于 10%的W r和η变化率相关的出色热稳定性和频率稳定性。所有这些优点表明,掺杂的Bi(Mg 2/3 Ta 1/3 )O 3组分导致优化的能量存储性能。这项工作可能会在探索用于储能应用的具有优异性能的陶瓷介电电容器方面引起人们的极大关注。