当前位置:
X-MOL 学术
›
Adv. Intell. Syst.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Distributed Strain Sensor Based on Self-Powered, Stretchable Mechanoluminescent Optical Fiber
Advanced Intelligent Systems ( IF 6.8 ) Pub Date : 2023-07-08 , DOI: 10.1002/aisy.202300113 Hongyou Zhou 1 , Xin Wang 1 , Yongcheng He 1 , Haohua Liang 1 , Meihua Chen 1 , Haojun Liu 1 , Abdulkareem Qasem 1 , Puxian Xiong 2 , Dengfeng Peng 3 , Jiulin Gan 1 , Zhongmin Yang 1
Advanced Intelligent Systems ( IF 6.8 ) Pub Date : 2023-07-08 , DOI: 10.1002/aisy.202300113 Hongyou Zhou 1 , Xin Wang 1 , Yongcheng He 1 , Haohua Liang 1 , Meihua Chen 1 , Haojun Liu 1 , Abdulkareem Qasem 1 , Puxian Xiong 2 , Dengfeng Peng 3 , Jiulin Gan 1 , Zhongmin Yang 1
Affiliation
The ability to locate and quantify large strains will significantly improve the real-world application scenario of flexible and stretchable strain sensors. However, current methods for implementing stretchable distributed strain sensing still face challenges such as complicated demodulation, multisensor crosstalk, and high power consumption. Herein, a self-powered and stretchable optical fiber strain sensor is reported with distributed sensing capability based on mechanoluminescent optical fiber, where mechanoluminescent phosphors with different emission color light are discretely integrated onto the outer cladding of the elastomer optical fiber. Based on the wavelength coding technique and time-domain filtering comparison method, the capability of strain magnitude quantification (10–60%) and strain location identification together in a single stretchable optical fiber is successfully realized, even at multiple positions simultaneously in the strain-applied situation. Moreover, this stretchable optical fiber strain sensor shows insensitivity to bending, compression, and temperature disturbances and outstanding durability (>8000 cycles). Due to the excellent light confinement of the elastomer optical fiber, demonstrations such as bright-field measurement, saline water operation, and wearable glove application exhibit its potential as a promising technology for future self-powered distributed optical sensing systems.
中文翻译:
基于自供电、可拉伸机械发光光纤的分布式应变传感器
定位和量化大应变的能力将显着改善柔性可拉伸应变传感器的实际应用场景。然而,目前实现可拉伸分布式应变传感的方法仍然面临解调复杂、多传感器串扰和高功耗等挑战。本文报道了一种基于机械发光光纤的具有分布式传感能力的自供电、可拉伸光纤应变传感器,其中具有不同发射颜色光的机械发光磷光体被离散地集成到弹性体光纤的外包层上。基于波长编码技术和时域滤波比较方法,在单根可拉伸光纤中成功实现了应变大小量化(10-60%)和应变位置识别的能力,即使在施加应变的情况下同时在多个位置也是如此。此外,这种可拉伸光纤应变传感器对弯曲、压缩和温度干扰不敏感,并且具有出色的耐用性(>8000 次循环)。由于弹性体光纤具有出色的光限制能力,明场测量、盐水操作和可穿戴手套应用等演示展示了其作为未来自供电分布式光学传感系统的一项有前途的技术的潜力。这种可拉伸光纤应变传感器对弯曲、压缩和温度干扰不敏感,并且具有出色的耐用性(>8000 次循环)。由于弹性体光纤具有出色的光限制能力,明场测量、盐水操作和可穿戴手套应用等演示展示了其作为未来自供电分布式光学传感系统的一项有前途的技术的潜力。这种可拉伸光纤应变传感器对弯曲、压缩和温度干扰不敏感,并且具有出色的耐用性(>8000 次循环)。由于弹性体光纤具有出色的光限制能力,明场测量、盐水操作和可穿戴手套应用等演示展示了其作为未来自供电分布式光学传感系统的一项有前途的技术的潜力。
更新日期:2023-07-08
中文翻译:
基于自供电、可拉伸机械发光光纤的分布式应变传感器
定位和量化大应变的能力将显着改善柔性可拉伸应变传感器的实际应用场景。然而,目前实现可拉伸分布式应变传感的方法仍然面临解调复杂、多传感器串扰和高功耗等挑战。本文报道了一种基于机械发光光纤的具有分布式传感能力的自供电、可拉伸光纤应变传感器,其中具有不同发射颜色光的机械发光磷光体被离散地集成到弹性体光纤的外包层上。基于波长编码技术和时域滤波比较方法,在单根可拉伸光纤中成功实现了应变大小量化(10-60%)和应变位置识别的能力,即使在施加应变的情况下同时在多个位置也是如此。此外,这种可拉伸光纤应变传感器对弯曲、压缩和温度干扰不敏感,并且具有出色的耐用性(>8000 次循环)。由于弹性体光纤具有出色的光限制能力,明场测量、盐水操作和可穿戴手套应用等演示展示了其作为未来自供电分布式光学传感系统的一项有前途的技术的潜力。这种可拉伸光纤应变传感器对弯曲、压缩和温度干扰不敏感,并且具有出色的耐用性(>8000 次循环)。由于弹性体光纤具有出色的光限制能力,明场测量、盐水操作和可穿戴手套应用等演示展示了其作为未来自供电分布式光学传感系统的一项有前途的技术的潜力。这种可拉伸光纤应变传感器对弯曲、压缩和温度干扰不敏感,并且具有出色的耐用性(>8000 次循环)。由于弹性体光纤具有出色的光限制能力,明场测量、盐水操作和可穿戴手套应用等演示展示了其作为未来自供电分布式光学传感系统的一项有前途的技术的潜力。