当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Revealing the Intrinsic Decay of Mechanoluminescence for Achieving Ultrafast-Response Stress Sensing
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-07-08 , DOI: 10.1002/adfm.202304917 Changjian Chen 1 , Zhu Lin 1 , Honghui Huang 1 , Xin Pan 1 , Tian‐Liang Zhou 1 , Hongde Luo 2, 3 , Libo Jin 2, 3 , Dengfeng Peng 4 , Jian Xu 5 , Yixi Zhuang 1 , Rong‐Jun Xie 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-07-08 , DOI: 10.1002/adfm.202304917 Changjian Chen 1 , Zhu Lin 1 , Honghui Huang 1 , Xin Pan 1 , Tian‐Liang Zhou 1 , Hongde Luo 2, 3 , Libo Jin 2, 3 , Dengfeng Peng 4 , Jian Xu 5 , Yixi Zhuang 1 , Rong‐Jun Xie 1
Affiliation
Converting mechanical energy into photon emission provides a promising route for intelligent sensing, self-powered lighting, and distributed energy harvesting, which is of great significance for finding a feasible solution to the current sensing technical bottleneck and energy crisis. As the basis for understanding the conversion mechanism and realizing high-frequency mechanical energy utilization, elucidating the dynamic process of intensity variation in the mechano-to-photon conversion remains a great challenge. Herein, a time-domain characterization scheme that enables to unravel the intrinsic decay of mechanoluminescence (ML) with lifetimes from milliseconds down to tens of microseconds is constructed. It is demonstrated that ML decay characterization is an important tool to reveal the dynamics of charge migration in ML materials. The ML decay in a typical self-reproducible ML material ZnS:Mn2+ shows temperature dependence and stress fluctuation resistance, which opens up a new reliable approach for self-powered and remote temperature sensing. Finally, benefiting from the shortest ML lifetime recorded to date, an ultrafast-response stress sensor that enables to detect individual pulses of ultrasonic waves with ML sensing technology is developed.
中文翻译:
揭示机械发光的固有衰减以实现超快响应应力传感
将机械能转化为光子发射,为智能传感、自供电照明和分布式能量收集提供了一条有前景的路线,对于寻找解决当前传感技术瓶颈和能源危机的可行解决方案具有重要意义。作为理解转换机制和实现高频机械能利用的基础,阐明机械-光子转换中强度变化的动态过程仍然是一个巨大的挑战。本文构建了一种时域表征方案,能够揭示寿命从毫秒到数十微秒的机械发光(ML)的固有衰减。结果表明,ML 衰减表征是揭示 ML 材料中电荷迁移动力学的重要工具。典型的自复制ML材料ZnS:Mn 2+中的ML衰减表现出温度依赖性和应力波动抗性,这为自供电和远程温度传感开辟了一种新的可靠方法。最后,得益于迄今为止记录的最短 ML 寿命,我们开发了一种超快响应应力传感器,能够利用 ML 传感技术检测单个超声波脉冲。
更新日期:2023-07-08
中文翻译:
揭示机械发光的固有衰减以实现超快响应应力传感
将机械能转化为光子发射,为智能传感、自供电照明和分布式能量收集提供了一条有前景的路线,对于寻找解决当前传感技术瓶颈和能源危机的可行解决方案具有重要意义。作为理解转换机制和实现高频机械能利用的基础,阐明机械-光子转换中强度变化的动态过程仍然是一个巨大的挑战。本文构建了一种时域表征方案,能够揭示寿命从毫秒到数十微秒的机械发光(ML)的固有衰减。结果表明,ML 衰减表征是揭示 ML 材料中电荷迁移动力学的重要工具。典型的自复制ML材料ZnS:Mn 2+中的ML衰减表现出温度依赖性和应力波动抗性,这为自供电和远程温度传感开辟了一种新的可靠方法。最后,得益于迄今为止记录的最短 ML 寿命,我们开发了一种超快响应应力传感器,能够利用 ML 传感技术检测单个超声波脉冲。