Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-07-08 , DOI: 10.1016/j.cej.2023.144639 Xiaoqin Xu , Mingyang Liu , Yao Nie , Cheng Wang , Wei Wang , Chuntao Liu , Xinyu Wang , Zhuang Cai , Xiaofeng Liu , Sichen Huo , Bin Liu , Jinlong Zou
Interface engineering can regulate electronic structure of transition-metal nitrides to promote their electrocatalytic activities. However, design of iron nitride (Fe2N)-based electrocatalytic interface with desirable properties is still challenging. Here, an in-situ nucleation strategy is developed to construct the highly-dispersed Fe2N/spinal (CoFe2O4) heterojunctions to optimize the electro-conductivity and activity. The heterostructure exhibits robust activities towards ORR (half-wave potential, 0.903 V) and OER (overpotential, 300 mV). Interfacial interactions between Fe2N and CoFe2O4 mitigate the corrosion (leaching) and severe agglomeration of active components in harsh environments to stabilize the electrocatalytic activity, maintaining the integrity of heterostructure and the sustainable exposure of active sites. Theorical calculations confirm the feasibility of incorporating Fe2N into basal plane of spinal lattice (Fe2N (0 0 2) and CoFe2O4 (4 0 0) is well matched). Modulated electronic state optimizes the adsorption/desorption strength of O-intermediates on the interfacial Fe-sites (the main active sites) of Fe2N/CoFe2O4 for both ORR and OER. Strong coupling of Fe2N and CoFe2O4 bolsters the charge-transfer across the interfaces to substantially accelerate the ORR/OER kinetics. Notably, by vital of a small potential-gap (0.634 V), it displays excellent power-density (225 mW cm−2) and cycling-stability (280 h) in zinc-air battery. This work enriches the understanding of electronic structure modulation of hetero-structured nitride/spinel-based electrocatalysts.
中文翻译:
调节Fe2N/CoFe2O4纳米异质结构中界面Fe位点的电子结构以增强锌空气电池的耐腐蚀性和氧电催化作用
界面工程可以调节过渡金属氮化物的电子结构以促进其电催化活性。然而,设计具有理想性能的氮化铁(Fe 2 N)基电催化界面仍然具有挑战性。在这里,开发了原位成核策略来构建高度分散的 Fe 2 N/脊髓 (CoFe 2 O 4 ) 异质结,以优化导电性和活性。该异质结构对 ORR(半波电位,0.903 V)和 OER(过电位,300 mV)表现出强大的活性。Fe 2 N与CoFe 2 O 4之间的界面相互作用减轻恶劣环境下活性组分的腐蚀(浸出)和严重团聚,以稳定电催化活性,保持异质结构的完整性和活性位点的可持续暴露。理论计算证实了将Fe 2 N掺入脊柱晶格基面的可行性(Fe 2 N (0 0 2) 和CoFe 2 O 4 (4 0 0) 匹配良好)。调制电子态优化了 O-中间体在 Fe 2 N/CoFe 2 O 4界面 Fe 位(主要活性位点)上的ORR 和 OER 吸附/解吸强度。Fe 2的强耦合N和CoFe 2 O 4增强了界面上的电荷转移,从而显着加速了ORR/OER动力学。值得注意的是,由于具有小电位隙(0.634 V),它在锌空气电池中表现出优异的功率密度(225 mW cm -2 )和循环稳定性(280 h)。这项工作丰富了对异质结构氮化物/尖晶石基电催化剂的电子结构调制的理解。