当前位置:
X-MOL 学术
›
J. Non Equilib. Thermodyn.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Uncovering enzymatic structural adaptations from energy dissipation
Journal of Non-Equilibrium Thermodynamics ( IF 4.3 ) Pub Date : 2023-07-07 , DOI: 10.1515/jnet-2023-0044 Andrés Arango-Restrepo 1 , Daniel Barragán 2 , J. Miguel Rubi 1
Journal of Non-Equilibrium Thermodynamics ( IF 4.3 ) Pub Date : 2023-07-07 , DOI: 10.1515/jnet-2023-0044 Andrés Arango-Restrepo 1 , Daniel Barragán 2 , J. Miguel Rubi 1
Affiliation
While genetic mutations, natural selection and environmental pressures are well-known drivers of enzyme evolution, we show that their structural adaptations are significantly influenced by energy dissipation. Enzymes use chemical energy to do work, which results in a loss of free energy due to the irreversible nature of the process. By assuming that the catalytic process occurs along a potential barrier, we describe the kinetics of the conversion of enzyme-substrate complexes to enzyme-product complexes and calculate the energy dissipation. We show that the behaviour of the dissipated energy is a non-monotonic function of the energy of the intermediate state. This finding supports our main result that enzyme configurations evolve to minimise energy dissipation and simultaneously improve kinetic and thermodynamic efficiencies. Our study provides a novel insight into the complex process of enzyme evolution and highlights the crucial role of energy dissipation in shaping structural adaptations.
中文翻译:
揭示能量耗散的酶促结构适应
虽然基因突变、自然选择和环境压力是酶进化的众所周知的驱动因素,但我们表明它们的结构适应受到能量耗散的显着影响。酶利用化学能来做功,由于该过程的不可逆性,会导致自由能的损失。通过假设催化过程沿着势垒发生,我们描述了酶-底物复合物转化为酶-产物复合物的动力学并计算了能量耗散。我们证明耗散能量的行为是中间态能量的非单调函数。这一发现支持了我们的主要结果,即酶构型的进化可以最大限度地减少能量耗散,同时提高动力学和热力学效率。
更新日期:2023-07-07
中文翻译:
揭示能量耗散的酶促结构适应
虽然基因突变、自然选择和环境压力是酶进化的众所周知的驱动因素,但我们表明它们的结构适应受到能量耗散的显着影响。酶利用化学能来做功,由于该过程的不可逆性,会导致自由能的损失。通过假设催化过程沿着势垒发生,我们描述了酶-底物复合物转化为酶-产物复合物的动力学并计算了能量耗散。我们证明耗散能量的行为是中间态能量的非单调函数。这一发现支持了我们的主要结果,即酶构型的进化可以最大限度地减少能量耗散,同时提高动力学和热力学效率。