当前位置: X-MOL 学术InfoMat › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ionic liquid engineering enabled in-plane orientated 1D perovskite nanorods for efficient mixed-dimensional perovskite photovoltaics
InfoMat ( IF 22.7 ) Pub Date : 2023-06-16 , DOI: 10.1002/inf2.12459
Fei Wang 1, 2 , Dawei Duan 1 , Kang Zhou 1 , Y. Z. B. Xue 3 , Xiao Liang 1, 2 , Xianfang Zhou 1, 2 , Chuangye Ge 1 , Chao Zhou 1 , Jin Xiang 4 , Jiajie Zhu 5 , Quanyao Zhu 2 , Haoran Lin 1 , Yumeng Shi 4 , Yonghua Chen 6 , Gang Li 7 , Hanlin Hu 1
Affiliation  

Mixed-dimensional engineering of perovskite material has been demonstrated as a facile and promising strategy to improve both photovoltaic performance and long-term stability of perovskite solar cells (PSCs). In this study, we report an in-plane preferred orientation of 1D perovskite induced by an ionic liquid (IL) of 1-(3-cyanopropyl)-3-methylimidazolium chloride (CPMIMCl) for the first time via sequential deposition approach, leading to a mixed dimensional perovskite thin films. The generated one-dimensional (1D) CPMIMPbI3 with in-plane orientation resides at the grain boundaries of three-dimensional (3D) perovskite can be appreciably observed from the morphology level, leading to creation of high-quality films with large grain size with more efficient defect passivation. Moreover, the dispersion of IL in the bulk phase of perovskite material allows for the formation of 1D perovskite for multiple level passivation to inhibit non-radiative recombination and optimize carrier transport. This IL engineering strategy not only yields a mixed-dimensional perovskite heterostructure with in-plane orientation 1D perovskite nano-rods but also significantly improves the opto-electronic property with suppressed trap states. As a result, the CPMIMCl-treated PSCs show an enhanced photovoltaic performance with a champion power conversion efficiency (PCE) up to 24.13%. More importantly, benefiting from the hydrophobicity of formed 1D perovskite and defects suppression, the corresponding PSC demonstrates an excellent long-term stability and maintain 97.1% of its pristine PCE at 25°C under 50% RH condition over 1000 h. This research provides an innovative perspective for employing the low dimensional engineering to optimize the performance and stability of photovoltaic devices.

中文翻译:

离子液体工程实现面内定向一维钙钛矿纳米棒,实现高效的混合维钙钛矿光伏发电

钙钛矿材料的混合维度工程已被证明是一种简单且有前途的策略,可以提高钙钛矿太阳能电池(PSC)的光伏性能和长期稳定性。在这项研究中,我们首次通过顺序沉积方法报道了由 1-(3-氰基丙基)-3-甲基咪唑氯化物 (CPMIMCl) 的离子液体 (IL) 诱导的一维钙钛矿的面内择优取向,从而导致混合维度钙钛矿薄膜。生成的一维 (1D) CPMIMPbI 3可以从形态水平上明显观察到存在于三维(3D)钙钛矿晶界处的面内取向,从而产生具有大晶粒尺寸的高质量薄膜,并更有效地钝化缺陷。此外,IL在钙钛矿材料体相中的分散可以形成一维钙钛矿,用于多级钝化,抑制非辐射复合并优化载流子传输。这种IL工程策略不仅产生了具有面内取向一维钙钛矿纳米棒的混合维钙钛矿异质结构,而且还显着改善了光电特性并抑制了陷阱态。因此,经过 CPMIMCl 处理的 PSC 显示出增强的光伏性能,冠军功率转换效率 (PCE) 高达 24.13%。更重要的是,受益于形成的一维钙钛矿的疏水性和缺陷抑制,相应的PSC表现出优异的长期稳定性,在25°C、50% RH条件下1000小时内保持97.1%的原始PCE。这项研究为利用低维工程优化光伏器件的性能和稳定性提供了创新的视角。
更新日期:2023-06-16
down
wechat
bug