当前位置: X-MOL 学术 › Front Mech Eng › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of lunar regolith-based composite for in-situ 3D printing via high-pressure extrusion system
Frontiers of Mechanical Engineering Pub Date : 2023-07-05 , DOI: 10.1007/s11465-022-0745-8
Hua Zhao , Jihong Zhu , Shangqin Yuan , Shaoying Li , Weihong Zhang

To fully utilize the in-situ resources on the moon to facilitate the establishment of a lunar habitat is significant to realize the long-term residence of mankind on the moon and the deep space exploration in the future. Thus, intensive research works have been conducted to develop types of 3D printing approach to adapt to the extreme environment and utilize the lunar regolith for in-situ construction. However, the in-situ 3D printing using raw lunar regolith consumes extremely high energy and time. In this work, we proposed a cost-effective melting extrusion system for lunar regolith-based composite printing, and engineering thermoplastic powders are employed as a bonding agent for lunar regolith composite. The high-performance nylon and lunar regolith are uniformly pre-mixed in powder form with different weight fractions. The high-pressure extrusion system is helpful to enhance the interface affinity of polymer binders with lunar regolith as well as maximize the loading ratio of in-situ resources of lunar regolith. Mechanical properties such as tensile strength, elastic modulus, and Poisson’s ratio of the printed specimens were evaluated systematically. Especially, the impact performance was emphasized to improve the resistance of the meteorite impact on the moon. The maximum tensile strength and impact toughness reach 36.2 MPa and 5.15 kJ/m2, respectively. High-pressure melt extrusion for lunar regolith composite can increase the effective loading fraction up to 80 wt.% and relatively easily adapt to extreme conditions for in-situ manufacturing.



中文翻译:

通过高压挤出系统开发用于原位 3D 打印的基于月球风化层的复合材料

充分利用月球原地资源,便利建立月球栖息地,对于实现人类在月球上的长期居住和未来的深空探索具有重要意义。因此,人们进行了大量的研究工作,以开发适应极端环境的3D打印方法,并利用月球风化层进行原位建造。然而,使用原始月球风化层进行原位3D打印会消耗极高的能量和时间。在这项工作中,我们提出了一种用于月球风化层复合材料打印的经济高效的熔融挤出系统,并采用工程热塑性粉末作为月球风化层复合材料的粘合剂。高性能尼龙和月球风化层以不同重量分数的粉末形式均匀预混合。高压挤出系统有助于增强聚合物粘合剂与月壤的界面亲和力,最大限度地提高月壤原位资源的负载率。系统地评估了打印样品的拉伸强度、弹性模量和泊松比等机械性能。特别强调了冲击性能,提高了陨石撞击月球的抵抗能力。最大拉伸强度和冲击韧性分别达到36.2 MPa和5.15 kJ/m 2。月球风化层复合材料的高压熔融挤出可以将有效负载分数提高至80重量%,并且相对容易地适应现场制造的极端条件。

更新日期:2023-07-05
down
wechat
bug