Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Notch signaling generates the “cut here line” on the cuticle of the puparium in Drosophila melanogaster
iScience ( IF 4.6 ) Pub Date : 2023-07-04 , DOI: 10.1016/j.isci.2023.107279 Reiko Tajiri 1 , Ayaka Hirano 1 , Yu-Ya Kaibara 1 , Daiki Tezuka 1 , Zhengyang Chen 1 , Tetsuya Kojima 1
iScience ( IF 4.6 ) Pub Date : 2023-07-04 , DOI: 10.1016/j.isci.2023.107279 Reiko Tajiri 1 , Ayaka Hirano 1 , Yu-Ya Kaibara 1 , Daiki Tezuka 1 , Zhengyang Chen 1 , Tetsuya Kojima 1
Affiliation
During a molt or eclosion, insects shed their cuticle, an extracellular matrix made by underlying epidermal cells, by cleavage along a defined line. This means that the “cut here line” is pre-formed on the cuticle, and its formation is indispensable for insect life. Here, we show that the proper formation of the operculum ridge (OR), which is the “cut here line” on the puparium (pupal case) of , involves Notch signaling activation in the epidermal cells just beneath the future OR region (OR-forming cells). The inhibition of Notch signaling causes defects in eclosion due to failure in OR cleavage, the chitin organization and several cuticular proteins localization, glucose dehydrogenase (Gld) activity, and OR-forming cell shape. Our findings provide the first insight into the molecular basis of the structure and formation of the “cut here line” on the cuticle.
中文翻译:
Notch 信号在果蝇蛹的角质层上产生“切线”
在蜕皮或羽化过程中,昆虫通过沿规定线分裂而脱落角质层,这是一种由底层表皮细胞制成的细胞外基质。这意味着“切线”是在角质层上预先形成的,它的形成对于昆虫的生命是不可或缺的。在这里,我们表明,厣脊(OR)的正确形成,即蛹(蛹情况)上的“此处切割线”,涉及未来 OR 区域下方表皮细胞中的 Notch 信号激活(OR-形成细胞)。Notch 信号传导的抑制会因 OR 裂解、几丁质组织和几种角质蛋白定位、葡萄糖脱氢酶 (Gld) 活性和 OR 形成细胞形状失败而导致羽化缺陷。我们的研究结果首次深入了解角质层“切线”的结构和形成的分子基础。
更新日期:2023-07-04
中文翻译:
Notch 信号在果蝇蛹的角质层上产生“切线”
在蜕皮或羽化过程中,昆虫通过沿规定线分裂而脱落角质层,这是一种由底层表皮细胞制成的细胞外基质。这意味着“切线”是在角质层上预先形成的,它的形成对于昆虫的生命是不可或缺的。在这里,我们表明,厣脊(OR)的正确形成,即蛹(蛹情况)上的“此处切割线”,涉及未来 OR 区域下方表皮细胞中的 Notch 信号激活(OR-形成细胞)。Notch 信号传导的抑制会因 OR 裂解、几丁质组织和几种角质蛋白定位、葡萄糖脱氢酶 (Gld) 活性和 OR 形成细胞形状失败而导致羽化缺陷。我们的研究结果首次深入了解角质层“切线”的结构和形成的分子基础。