当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The first infinite family of orthogonal Steiner systems S(3,5,v)
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-07-04 , DOI: 10.1016/j.jcta.2023.105782
Qianqian Yan , Junling Zhou

The research on orthogonal Steiner systems S(t,k,v) was initiated in 1968. For (t,k){(2,3),(3,4)}, this corresponds to orthogonal Steiner triple systems (STSs) and Steiner quadruple systems (SQSs), respectively. The existence problem of a pair of orthogonal STSs or SQSs was settled completely thirty years ago. However, for Steiner systems with t3 and k5, only two small examples of orthogonal pairs were known to exist before this work. An infinite family of orthogonal Steiner systems S(3,5,v) is constructed in this paper. In particular, the existence of a pair of orthogonal Steiner systems S(3,5,4m+1) is established for any even m2; additionally a pair of orthogonal G-designs G(4m+15,5,5,3) is displayed for any odd m3. The construction is based on the Steiner systems admitting 3-transitive automorphism groups supported by elementary symmetric polynomials. Moreover, 50 mutually orthogonal Steiner systems S(5,8,24) are shown to exist.



中文翻译:

第一个无限族正交 Steiner 系统 S(3,5,v)

正交Steiner系统S的研究t,k,v于 1968 年发起。t,kε{2,3,3,4},这分别对应于正交斯坦纳三重系统(STS)和斯坦纳四重系统(SQS)。一对正交STS或SQS的存在问题在三十年前就已得到彻底解决。然而,对于 Steiner 系统t3k5,在这项工作之前,只知道存在两个正交对的小例子。正交 Steiner 系统 S 的无限族3,5,v本文构建。特别是,存在一对正交 Steiner 系统S3,5,4+1对于任意偶数成立2; 另外还有一对正交的 G 设计 G4+15,5,5,3显示任何奇数3。该构造基于承认基本对称多项式支持的 3 传递自同构群的 Steiner 系统。此外,50个相互正交的斯坦纳系统S5,8,24都显示存在。

更新日期:2023-07-05
down
wechat
bug