碳材料(例如热解碳(PyC))广泛应用于农业土壤中,可以参与各种生物地球化学过程,包括铁(Fe)循环。在土壤中,Fe(II) 物质被认为是产生活性氧 (ROS) 的主要活性贡献者,活性氧参与各种生物地球化学过程。然而,PyC 对土壤中不同铁形态的转化以及相关的 ROS 产生的影响却很少被研究。本研究探讨了稻田土壤氧化还原波动期间 PyC(在 300–700 °C 热解)对 Fe(II)/Fe(III) 循环和羟基自由基 (·OH) 产生的影响。结果表明,缺氧培养过程中 PyC 促进了土壤中 Fe(III) 的还原,这归因于异化 Fe(III) 还原微生物(生物还原)的丰度增加和 PyC(非生物还原)的电子交换能力的增加。在氧化过程中,PyC和较高的土壤pH促进活性Fe(II)物种(例如可交换性和低结晶Fe(II))的氧化,从而诱导更高的·OH产量,并进一步导致吡虫啉降解和灭活。土壤微生物。我们的研究结果表明,PyC 加速了稻田土壤(特别是土壤有机碳含量较低的土壤)氧化还原波动期间 Fe(II)/Fe(III) 循环和·OH 的产生,为受污染农田的修复策略提供了新的见解。有机污染物。PyC和较高的土壤pH促进了活性Fe(II)物种(例如可交换的低结晶Fe(II))的氧化,从而诱导更高的·OH产量,并进一步导致吡虫啉的降解和土壤微生物的失活。我们的研究结果表明,PyC 加速了稻田土壤(特别是土壤有机碳含量较低的土壤)氧化还原波动期间 Fe(II)/Fe(III) 循环和·OH 的产生,为受污染农田的修复策略提供了新的见解。有机污染物。PyC和较高的土壤pH促进了活性Fe(II)物种(例如可交换的低结晶Fe(II))的氧化,从而诱导更高的·OH产量,并进一步导致吡虫啉的降解和土壤微生物的失活。我们的研究结果表明,PyC 加速了稻田土壤(特别是土壤有机碳含量较低的土壤)氧化还原波动期间 Fe(II)/Fe(III) 循环和·OH 的产生,为受污染农田的修复策略提供了新的见解。有机污染物。
图形概要
"点击查看英文标题和摘要"
Pyrogenic carbon accelerates iron cycling and hydroxyl radical production during redox fluctuations of paddy soils
Carbon materials (e.g., pyrogenic carbon (PyC)) are widely used in agricultural soils and can participate in various biogeochemical processes, including iron (Fe) cycling. In soils, Fe(II) species have been proposed as the main active contributor to produce reactive oxygen species (ROS), which are involved in various biogeochemical processes. However, the effects of PyC on the transformation of different Fe species in soils and the associated production of ROS are rarely investigated. This study examined the influence of PyC (pyrolyzed at 300–700 °C) on Fe(II)/Fe(III) cycling and hydroxyl radical (·OH) production during redox fluctuations of paddy soils. Results showed that the reduction of Fe(III) in soils was facilitated by PyC during anoxic incubation, which was ascribed to the increased abundance of dissimilatory Fe(III)-reducing microorganisms (biotic reduction) and the electron exchange capacity of PyC (abiotic reduction). During oxygenation, PyC and higher soil pH promoted the oxidation of active Fe(II) species (e.g., exchangeable and low-crystalline Fe(II)), which consequently induced higher yield of ·OH and further led to degradation of imidacloprid and inactivation of soil microorganisms. Our results demonstrated that PyC accelerated Fe(II)/Fe(III) cycling and ·OH production during redox fluctuations of paddy soils (especially those with low content of soil organic carbon), providing a new insight for remediation strategies in agricultural fields contaminated with organic pollutants.
Graphical Abstract