当前位置: X-MOL 学术J. Astrophys. Astron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Protoplanetary disk formation in rotating, magnetized and turbulent molecular cloud
Journal of Astrophysics and Astronomy ( IF 1.1 ) Pub Date : 2023-07-03 , DOI: 10.1007/s12036-023-09960-w
Gemechu M. Kumssa , S. B. Tessema

The study of protoplanetary disk formation and its connection with Solar system’s origin is considered to be one of the longest-standing problems in astronomy and astrophysics. To the current human understanding, planets are believed to be the hosts of life. Therefore, understanding the dynamic process affecting the formation of protoplanetary disk leads to predicting the origin of our Solar system. The fundamental question we raise here is how the properties of the surrounding gas and dust, which provide mass for the disk and central protostar formations, affect the properties of the protoplanetary disk. This paper investigates how the infalling core’s magnetic field, rotation and turbulence govern the protoplanetary disk formation. The theoretical model we have developed and the numerical results generated from the theoretical model show that a strongly magnetized and rotating core results in a relatively massive protoplanetary disk. Moreover, most of the disk’s angular momentum is removed outwards due to the infalling core’s magnetic field and its rotation speed.



中文翻译:

旋转、磁化和湍流分子云中的原行星盘形成

原行星盘的形成及其与太阳系起源的联系的研究被认为是天文学和天体物理学中最古老的问题之一。根据目前人类的理解,行星被认为是生命的宿主。因此,了解影响原行星盘形成的动态过程可以预测太阳系的起源。我们在这里提出的基本问题是,为盘和中心原恒星形成提供质量的周围气体和尘埃的特性如何影响原行星盘的特性。本文研究了坠落核心的磁场、旋转和湍流如何控制原行星盘的形成。我们开发的理论模型和理论模型产生的数值结果表明,强磁化和旋转的核心会产生相对较大的原行星盘。此外,由于下落核心的磁场及其旋转速度,圆盘的大部分角动量被向外消除。

更新日期:2023-07-03
down
wechat
bug