当前位置: X-MOL 学术Int. J. Mach. Learn. & Cyber. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimal scale selection based on three-way decisions with decision-theoretic rough sets in multi-scale set-valued decision tables
International Journal of Machine Learning and Cybernetics ( IF 3.1 ) Pub Date : 2023-07-03 , DOI: 10.1007/s13042-023-01860-3
Runkang Li , Jilin Yang , Xianyong Zhang

Optimal scale selection (OSS) is a fundamental topic in the studies of multi-scale decision tables (MSDTs). Multi-scale set-valued decision tables (MSSVDTs) widely exist in practical applications, and the attribute value is a linguistic set-value. Existing studies of OSS in the MSDT with cost-sensitive learning have constructed total cost mainly from two aspects: test cost and delay cost. Moreover, they are given subjectively, resulting in a lack of objectivity in the construction of total cost. Therefore, constructing a relatively objective and comprehensive total cost for OSS based on cost-sensitive learning is worthwhile in MSSVDTs. In this paper, we firstly propose a quantization method to reasonably transform the linguistic set-value into a numerical value according to the granular structures. Then, based on three-way decisions with decision-theoretic rough sets, loss functions of every object on different scales are constructed, and uncertainty is quantified. Afterwards, loss functions are introduced into the construction of total cost with regard to OSS. This helps us obtain relatively objective total cost, including test cost, delay cost, and misclassification cost. Furthermore, in light of the idea of Technique for Order Preferences by Similarity to an Ideal Solution, we design an OSS algorithm to select the optimal scale according to the ordered change of uncertainty and total cost. Finally, the feasibility and effectiveness of the proposed algorithm are verified through experiments on UCI data sets.



中文翻译:

多尺度集值决策表中基于决策理论粗糙集三路决策的最优尺度选择

最优尺度选择(OSS)是多尺度决策表(MSDT)研究的一个基本主题。多尺度集值决策表(MSSVDT)在实际应用中广泛存在,其属性值是语言集值。现有的基于成本敏感学习的MSDT中OSS的研究主要从两个方面构建总成本:测试成本和延迟成本。而且它们都是主观给出的,导致总成本的构建缺乏客观性。因此,基于成本敏感学习构建相对客观、全面的OSS总成本在MSSVDT中是值得的。在本文中,我们首先提出了一种根据粒度结构合理地将语言集值转换为数值的量化方法。然后,基于决策理论粗糙集的三向决策,构建了不同尺度上每个对象的损失函数,并量化了不确定性。然后,将损失函数引入到OSS的总成本构建中。这有助于我们获得相对客观的总成本,包括测试成本、延迟成本和误分类成本。此外,根据与理想解决方案相似的顺序偏好技术的思想,我们设计了一种OSS算法,根据不确定性和总成本的有序变化来选择最佳规模。最后通过UCI数据集上的实验验证了所提算法的可行性和有效性。OSS 的总成本构建中引入了损失函数。这有助于我们获得相对客观的总成本,包括测试成本、延迟成本和误分类成本。此外,根据与理想解决方案相似的顺序偏好技术的思想,我们设计了一种OSS算法,根据不确定性和总成本的有序变化来选择最佳规模。最后通过UCI数据集上的实验验证了所提算法的可行性和有效性。OSS 的总成本构建中引入了损失函数。这有助于我们获得相对客观的总成本,包括测试成本、延迟成本和误分类成本。此外,根据与理想解决方案相似的顺序偏好技术的思想,我们设计了一种OSS算法,根据不确定性和总成本的有序变化来选择最佳规模。最后通过UCI数据集上的实验验证了所提算法的可行性和有效性。我们设计了一种OSS算法,根据不确定性和总成本的有序变化来选择最佳规模。最后通过UCI数据集上的实验验证了所提算法的可行性和有效性。我们设计了一种OSS算法,根据不确定性和总成本的有序变化来选择最佳规模。最后通过UCI数据集上的实验验证了所提算法的可行性和有效性。

更新日期:2023-07-03
down
wechat
bug