当前位置:
X-MOL 学术
›
Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Integrated Energy-Saving Superstructure and Optimization of the MEA-Absorption CO2 Capture System in a Coal-Fired Power Plant
Energy & Fuels ( IF 5.2 ) Pub Date : 2023-06-29 , DOI: 10.1021/acs.energyfuels.3c01133
Kefang Zhang 1 , Ziyang Wang 1 , Zhaoliang Wang 1 , Haoxuan Liu 1
Energy & Fuels ( IF 5.2 ) Pub Date : 2023-06-29 , DOI: 10.1021/acs.energyfuels.3c01133
Kefang Zhang 1 , Ziyang Wang 1 , Zhaoliang Wang 1 , Haoxuan Liu 1
Affiliation
![]() |
Methods called superstructure optimization (i.e., design optimization to synthesize a system process and parameter synchronization) are applied to an integrated energy-saving system for CO2 capture in this paper. First, the schemes of energy recovery including lean solution, condensate, and overhead gas (CO2 + H2O stream) in 1 million ton annual output of a CO2 capture system are investigated. Integrated energy-saving and possible and optimal schemes for the CO2 capture system are proposed, and an integrated energy-saving superstructure that contains these possible schemes is established. Second, optimal mathematical models describing the superstructure are established. The integrated energy-saving schemes and thermodynamic properties are obtained through the optimization method. Finally, sensitivity analysis for the optimal integrated energy-saving schemes is performed. The best schemes of the integrated energy-saving CO2 capture system through the optimization method are summarized as follows: The fifth extracted steam expands to the best pressure in the BPT. Then, the exhaust steam releases heat to become the subcooled water and enters an absorption refrigerator. The waste heat of the overhead gas is recycled by the absorption refrigerator. The waste heat of the lean solution is recycled by enlarging the lean-rich solution heat exchanger. Compared to the original system, the energy-saving ratio of heat consumption is 18.55% and the energy-saving ratio of electric consumption is 59% in the best schemes. Moreover, the sensitivity analysis indicates that there are minor changes in the operating parameters when the variable factors (bank discount rate i, price change rate of electricity and fuel iR, and unit price of equipment) are within the variation range of 20%, but there is no effect of the variable factors on the optimal schemes.
中文翻译:
燃煤电厂 MEA 吸收式 CO2 捕集系统集成节能上部结构及优化
本文将上层建筑优化(即设计优化以综合系统过程和参数同步)的方法应用于CO 2捕获的集成节能系统。首先研究了年产100万吨CO 2捕集系统的贫液、凝结水、塔顶气(CO 2 + H 2 O流)等能量回收方案。CO 2综合节能及可能的优化方案提出了捕获系统,并建立了包含这些可能方案的集成节能上部结构。其次,建立描述上层建筑的最优数学模型。通过优化方法得到综合节能方案和热力特性。最后对最优综合节能方案进行敏感性分析。CO 2综合节能最佳方案捕集系统通过优化方法总结如下: 第五次抽汽在BPT中膨胀至最佳压力。然后,排出的蒸汽放出热量,变成过冷水,进入吸收式制冷机。塔顶气体的余热由吸收式制冷机回收。通过扩大贫富溶液换热器的方式回收贫溶液的废热。与原系统相比,最佳方案热耗节能率为18.55%,电耗节能率为59%。此外,敏感性分析表明,当可变因素(银行贴现率i、电力和燃料价格变动率i R、设备单价)均在20%的变化范围内,但变化因素对最优方案没有影响。
更新日期:2023-06-29
中文翻译:

燃煤电厂 MEA 吸收式 CO2 捕集系统集成节能上部结构及优化
本文将上层建筑优化(即设计优化以综合系统过程和参数同步)的方法应用于CO 2捕获的集成节能系统。首先研究了年产100万吨CO 2捕集系统的贫液、凝结水、塔顶气(CO 2 + H 2 O流)等能量回收方案。CO 2综合节能及可能的优化方案提出了捕获系统,并建立了包含这些可能方案的集成节能上部结构。其次,建立描述上层建筑的最优数学模型。通过优化方法得到综合节能方案和热力特性。最后对最优综合节能方案进行敏感性分析。CO 2综合节能最佳方案捕集系统通过优化方法总结如下: 第五次抽汽在BPT中膨胀至最佳压力。然后,排出的蒸汽放出热量,变成过冷水,进入吸收式制冷机。塔顶气体的余热由吸收式制冷机回收。通过扩大贫富溶液换热器的方式回收贫溶液的废热。与原系统相比,最佳方案热耗节能率为18.55%,电耗节能率为59%。此外,敏感性分析表明,当可变因素(银行贴现率i、电力和燃料价格变动率i R、设备单价)均在20%的变化范围内,但变化因素对最优方案没有影响。