当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adsorbate Formation/Removal and Plasma-Induced Evolution of Defects in Graphitic Materials
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2023-07-02 , DOI: 10.1002/admi.202300256
Anna L. Eichhorn 1 , Marvin Hoffer 1 , Katharina Bitsch 1 , Christian Dietz 1
Affiliation  

The preparation of adsorbate-free graphene with well-defined layer numbers is a current challenge in materials and surface science and required to fabricate graphene-based nanodevices, such as used in nanoelectromechanical systems. One strategy to tailor the layer number is oxygen-plasma treatment of few-layer graphene/graphite flakes. However, when graphitic materials are stored in air under ambient conditions, it is almost inevitable that adsorbates deposit on their surfaces. When precisely removing individual graphene layers from graphitic flakes by oxygen-plasma treatment, the amount and type of adsorbates strongly affect the required plasma-treatment process and duration. To examine the removal/etching mechanism involved in removing such layers, few-layer graphene/graphite flakes, with areas of different layer numbers, are stored in ambient air and stepwise exposed to oxygen plasma in a shielded configuration. The flakes are then successively analyzed by multifrequency atomic force microscopy together with Raman spectroscopy, focusing on etching rate, and adsorbate and defect evolution. Combined in-plane and out-of-plane tip–adsorbate–substrate interaction analysis facilitates discrimination of different types of adsorbates (water, polycyclic aromatic hydrocarbons, and linear alkanes) and their formation with time. The results demonstrate the potential regarding the development of an efficient method for cleaning of graphitic surfaces and ablation of individual graphene layers.

中文翻译:

石墨材料中吸附质的形成/去除和等离子体诱导的缺陷演化

制备具有明确层数的无吸附物石墨烯是材料和表面科学中当前的挑战,并且是制造基于石墨烯的纳米器件(例如用于纳米机电系统)所必需的。定制层数的一种策略是对少层石墨烯/石墨片进行氧等离子体处理。然而,当石墨材料在环境条件下储存在空气中时,吸附物几乎不可避免地沉积在其表面上。当通过氧等离子体处理从石墨片上精确去除单个石墨烯层时,吸附物的数量和类型强烈影响所需的等离子体处理过程和持续时间。为了检查去除这些层、少层石墨烯/石墨片(具有不同层数的区域)所涉及的去除/蚀刻机制,储存在环境空气中,并在屏蔽配置中逐步暴露于氧等离子体。然后通过多频原子力显微镜和拉曼光谱连续分析薄片,重点关注蚀刻速率、吸附物和缺陷演变。面内和面外尖端-吸附物-基质相互作用分析相结合,有助于区分不同类型的吸附物(水、多环芳烃和直链烷烃)及其随时间的形成。结果证明了开发清洁石墨表面和烧蚀单个石墨烯层的有效方法的潜力。重点关注蚀刻速率、吸附物和缺陷演变。面内和面外尖端-吸附物-基质相互作用分析相结合,有助于区分不同类型的吸附物(水、多环芳烃和直链烷烃)及其随时间的形成。结果证明了开发清洁石墨表面和烧蚀单个石墨烯层的有效方法的潜力。重点关注蚀刻速率、吸附物和缺陷演变。面内和面外尖端-吸附物-基质相互作用分析相结合,有助于区分不同类型的吸附物(水、多环芳烃和直链烷烃)及其随时间的形成。结果证明了开发清洁石墨表面和烧蚀单个石墨烯层的有效方法的潜力。
更新日期:2023-07-02
down
wechat
bug