当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multifunctional absorbents for oily pollution control and mechanistic insights with theoretical simulation
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-06-29 , DOI: 10.1016/j.cej.2023.144466
Peiying Chen , Haihan Liu , Yutong Qi , Jun Wang , Xiaohong Hou , Jianhua Qu , Changyang Lei , Chongning Lv , Qi Hu

The fabrication of energy-efficient and high performing hydrophobic aerogels is highly desirable for addressing oil-based liquid pollution. The implementation of the aerogel adsorption process requires a comprehensive understanding of the macro-, micro-, and molecular-level mechanisms involved. To achieve this goal, molecular simulations can be employed to investigate the adsorption forces at the molecular level. Here, the cellulose extracted from Salvia miltiorrhiza Bunge residues (DS) were employed as natural building blocks to synthesize DS aerogel (DS-A) and subsequently silylated with methyltrimethoxysilane (MTMS). The resulting silylated DS aerogels (SDS-A) exhibited an exceptional adsorption capacity (25–105 g/g), endurable hydrophobicity, and a rapid oil adsorption rate of 5 s, with 2 wt% of DS cellulose (DS-C) and a porosity of 99.56%. Subsequently, the interactions were investigated between the silylated aerogel and oily liquids by means of docking, molecular dynamics (MD), and molecular mechanics-generalized Born surface area (MM-GBSA). Lipophilic energy and van der Waals energy surpassed Coulomb force in silylated cellulose/chlorobenzene complexes (−10.8 kcal/mol, −15.9 kcal/mol) and silylated cellulose/n-butyl acetate complexes (−4.3 kcal/mol, −17.1 kcal/mol). Molecular simulations revealed that van der Waals and hydrophobic interactions played crucial roles in adsorption. During the process, the adsorption mechanism was investigated at the molecular level, contributing to the understanding of silylated cellulose aerogel-based research. Moreover, the SDS-A demonstrated chemical durability with NaCl, NaOH, HCl, and oily liquids, as well as mechanical wear resistance without hydrophobic variation. Oil spill remediation results indicated that the aerogels could effectively facilitate continuous oil recycling from contaminated water in both artificial-driven and pump-driven experiments. This research provides novel insights into innovative solutions for oil-based liquid treatment technologies and future rational research.



中文翻译:

用于油污染控制的多功能吸收剂以及理论模拟的机理见解

制造节能且高性能的疏水性气凝胶对于解决油基液体污染是非常理想的。气凝胶吸附过程的实施需要全面了解所涉及的宏观、微观和分子层面的机制。为了实现这一目标,可以采用分子模拟来研究分子水平上的吸附力。这里,从丹参中提取的纤维素采用邦吉残基 (DS) 作为天然结构单元合成 DS 气凝胶 (DS-A),随后用甲基三甲氧基硅烷 (MTMS) 进行甲硅烷基化。所得的硅烷化 DS 气凝胶 (SDS-A) 具有出色的吸附能力 (25–105 g/g)、持久的疏水性和 5 s 的快速油吸附速率,其中 DS 纤维素 (DS-C) 含量为 2 wt%孔隙率为99.56%。随后,通过对接、分子动力学(MD)和分子力学广义玻恩表面积(MM-GBSA)研究了硅烷化气凝胶和油性液体之间的相互作用。甲硅烷基化纤维素/氯苯复合物(-10.8 kcal/mol,-15.9 kcal/mol)和甲硅烷基化纤维素/ n中的亲脂能和范德华能超过库仑力乙酸丁酯络合物(-4.3 kcal/mol,-17.1 kcal/mol)。分子模拟表明,范德华力和疏水相互作用在吸附中发挥着至关重要的作用。在此过程中,在分子水平上研究了吸附机制,有助于理解基于硅烷化纤维素气凝胶的研究。此外,SDS-A 表现出对 NaCl、NaOH、HCl 和油性液体的化学耐久性,以及机械耐磨性,且没有疏水性变化。溢油修复结果表明,在人工驱动和泵驱动实验中,气凝胶可以有效促进从污染水中连续回收油。这项研究为油基液体处理技术的创新解决方案和未来的理性研究提供了新颖的见解。

更新日期:2023-06-30
down
wechat
bug