当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Combining PEDOT:PSS Polymer Coating with Metallic 3D Nanowires Electrodes to Achieve High Electrochemical Performances for Neuronal Interfacing Applications
Advanced Materials ( IF 27.4 ) Pub Date : 2023-06-29 , DOI: 10.1002/adma.202302472 Ines Muguet 1 , Ali Maziz 1 , Fabrice Mathieu 1 , Laurent Mazenq 1 , Guilhem Larrieu 1
Advanced Materials ( IF 27.4 ) Pub Date : 2023-06-29 , DOI: 10.1002/adma.202302472 Ines Muguet 1 , Ali Maziz 1 , Fabrice Mathieu 1 , Laurent Mazenq 1 , Guilhem Larrieu 1
Affiliation
This study presents a novel approach to improve the performance of microelectrode arrays (MEAs) used for electrophysiological studies of neuronal networks. The integration of 3D nanowires (NWs) with MEAs increases the surface-to-volume ratio, which enables subcellular interactions and high-resolution neuronal signal recording. However, these devices suffer from high initial interface impedance and limited charge transfer capacity due to their small effective area. To overcome these limitations, the integration of conductive polymer coatings, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is investigated as a mean of improving the charge transfer capacity and biocompatibility of MEAs. The study combines platinum silicide-based metallic 3D nanowires electrodes with electrodeposited PEDOT:PSS coatings to deposit ultra-thin (<50 nm) layers of conductive polymer onto metallic electrodes with very high selectivity. The polymer-coated electrodes were fully characterized electrochemically and morphologically to establish a direct relationship between synthesis conditions, morphology, and conductive features. Results show that PEDOT-coated electrodes exhibit thickness-dependent improved stimulation and recording performances, offering new perspectives for neuronal interfacing with optimal cell engulfment to enable the study of neuronal activity with acute spatial and signal resolution at the sub-cellular level.
中文翻译:
将 PEDOT:PSS 聚合物涂层与金属 3D 纳米线电极相结合,实现神经元接口应用的高电化学性能
这项研究提出了一种提高用于神经网络电生理学研究的微电极阵列(MEA)性能的新方法。3D 纳米线 (NW) 与 MEA 的集成增加了表面与体积的比率,从而实现了亚细胞相互作用和高分辨率神经元信号记录。然而,这些器件由于有效面积小,因此面临着高初始界面阻抗和有限的电荷传输能力。为了克服这些限制,研究人员研究了导电聚合物涂层、聚(3,4-乙撑二氧噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)的集成,作为提高MEA的电荷转移能力和生物相容性的方法。该研究将硅化铂基金属 3D 纳米线电极与电沉积 PEDOT:PSS 涂层相结合,以非常高的选择性将超薄(<50 nm)导电聚合物层沉积到金属电极上。对聚合物涂层电极进行了全面的电化学和形态学表征,以建立合成条件、形态和导电特性之间的直接关系。结果表明,PEDOT 涂层电极表现出厚度依赖性改善的刺激和记录性能,为神经元接口与最佳细胞吞噬提供了新的视角,从而能够在亚细胞水平上以敏锐的空间和信号分辨率研究神经元活动。
更新日期:2023-06-29
中文翻译:
将 PEDOT:PSS 聚合物涂层与金属 3D 纳米线电极相结合,实现神经元接口应用的高电化学性能
这项研究提出了一种提高用于神经网络电生理学研究的微电极阵列(MEA)性能的新方法。3D 纳米线 (NW) 与 MEA 的集成增加了表面与体积的比率,从而实现了亚细胞相互作用和高分辨率神经元信号记录。然而,这些器件由于有效面积小,因此面临着高初始界面阻抗和有限的电荷传输能力。为了克服这些限制,研究人员研究了导电聚合物涂层、聚(3,4-乙撑二氧噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)的集成,作为提高MEA的电荷转移能力和生物相容性的方法。该研究将硅化铂基金属 3D 纳米线电极与电沉积 PEDOT:PSS 涂层相结合,以非常高的选择性将超薄(<50 nm)导电聚合物层沉积到金属电极上。对聚合物涂层电极进行了全面的电化学和形态学表征,以建立合成条件、形态和导电特性之间的直接关系。结果表明,PEDOT 涂层电极表现出厚度依赖性改善的刺激和记录性能,为神经元接口与最佳细胞吞噬提供了新的视角,从而能够在亚细胞水平上以敏锐的空间和信号分辨率研究神经元活动。