Nature Communications ( IF 14.7 ) Pub Date : 2023-06-30 , DOI: 10.1038/s41467-023-39633-9 Xuexue Chang 1 , Fangqing Zhang 1 , Shibo Zhu 1 , Zhuang Yang 2 , Xiaoming Feng 1, 3 , Yangbin Liu 1
Prenylated and reverse-prenylated indolines are privileged scaffolds in numerous naturally occurring indole alkaloids with a broad spectrum of important biological properties. Development of straightforward and stereoselective methods to enable the synthesis of structurally diverse prenylated and reverse-prenylated indoline derivatives is highly desirable and challenging. In this context, the most direct approaches to achieve this goal generally rely on transition-metal-catalyzed dearomative allylic alkylation of electron-rich indoles. However, the electron-deficient indoles are much less explored, probably due to their diminished nucleophilicity. Herein, a photoredox-catalyzed tandem Giese radical addition/Ireland–Claisen rearrangement is disclosed. Diastereoselective dearomative prenylation and reverse-prenylation of electron-deficient indoles proceed smoothly under mild conditions. An array of tertiary α-silylamines as radical precursors is readily incorporated in 2,3-disubstituted indolines with high functional compatibility and excellent diastereoselectivity (>20:1 d.r.). The corresponding transformations of the secondary α-silylamines provide the biologically important lactam-fused indolines in one-pot synthesis. Subsequently, a plausible photoredox pathway is proposed based on control experiments. The preliminary bioactivity study reveals a potential anticancer property of these structurally appealing indolines.
中文翻译:
光氧化还原催化缺电子吲哚衍生物的非对映选择性脱芳香异戊二烯化和反异戊二烯化
异戊二烯化和反异戊二烯化二氢吲哚是许多天然吲哚生物碱中的特殊支架,具有广泛的重要生物学特性。开发简单的立体选择性方法来合成结构多样的异戊二烯化和反异戊二烯化二氢吲哚衍生物是非常理想和具有挑战性的。在这种情况下,实现这一目标的最直接方法通常依赖于过渡金属催化的富电子吲哚的脱芳香烯丙基烷基化。然而,缺电子吲哚的研究较少,可能是由于它们的亲核性减弱。在此,公开了光氧化还原催化的串联吉斯自由基加成/爱尔兰-克莱森重排。缺电子吲哚的非对映选择性脱芳香异戊二烯化和反异戊二烯化在温和条件下顺利进行。一系列 α-甲硅烷基叔胺作为自由基前体,很容易掺入 2,3-二取代二氢吲哚中,具有高功能相容性和优异的非对映选择性 (>20:1 dr)。仲α-甲硅烷基胺的相应转化在一锅合成中提供了生物学上重要的内酰胺稠合二氢吲哚。随后,基于对照实验提出了一种合理的光氧化还原途径。初步的生物活性研究揭示了这些结构上有吸引力的二氢吲哚的潜在抗癌特性。