这项工作证明了亚微米尺寸金属氧化物作为超级电容器制造中可持续电荷存储材料的可行性,并解决了赝电容器的循环不稳定问题。通过共沉淀(BVO-N)和声化学(BVO-S)两种不同的途径合成了亚微米钒酸铋(BiVO 4 )颗粒。BVO-S 的形态研究显示,分级微球的直径范围为 1-6 μm,与 BVO-N 颗粒(直径 100 nm-1-μm)相比,其尺寸更为突出。硝酸对于稳定 BiVO 4起着至关重要的作用共沉淀过程中的颗粒,而超声波主要控制声化学途径中球形颗粒的形成。BVO-N 和 BVO-S 的电化学性能在氢氧化钾 (KOH) 电解质中进行了测试。充放电循环实验表明BVO-S微球比BVO-N具有更高的稳定性。BVO-N 的初始电容在超过 1000 次循环后开始退化。BVO-N 的稳定性差可能是由于表面吸附的带电离子物质的分解造成的。因此,与 BVO-N (124 F/g) 相比,BVO-S 的比电容值更高,为 214 F/g。Trasatti 分析显示,与 BVO-N 相比,BVO-S 的赝电容 (61%) 和双电层电容 (39%) 的协同行为是其比电容较高的原因。由于高度致密的微球形结构,BVO-S 具有较低的固有电阻,允许电解质离子进入 BVO-S 的内表面和外表面。有趣的是,在循环稳定性测试后,由于电化学活化,电荷转移电阻降低,并促进快速离子传输,增加了电极-电解质界面上活性材料的表面接触面积。我们用 BVO-S 微球(阳极)、活性炭颗粒(阴极)和聚环氧乙烷(PEO)/聚乙二醇二甲醚(PEGDME)/KOH 凝胶电解质制造了不对称电池。-1能量密度和 1983 W kg -1功率密度。此配置在 5000 次循环中实现了 98% 的循环稳定性。与 BiVO 4之前的工作相比,这个性能是可观的基于不对称的超级电容器,特别是电容保持率(%)和电势窗口。总体而言,这项工作中报道的无酸声化学加工路线是高度环保的。同样,亚微米金属氧化物颗粒显着提高了其电化学稳定性,而无需与任何碳质材料聚结在一起。它可以转移到合成更广泛的金属氧化物选择,以增强可循环性,并有效利用其电荷存储行为,从而执行高功率存储,为短距离电力运输提供动力。
"点击查看英文标题和摘要"
Tailoring hierarchical BiVO4 sub-micron particles for enhanced cyclability in asymmetric supercapacitor
This work demonstrates the feasibility of sub-micron size metal oxides as a sustainable charge storage material in supercapacitors fabrication and addressing the cycle instability issues of pseudocapacitors. The sub-micron bismuth vanadate (BiVO4) particles were synthesized by two different routes, co-precipitation (BVO-N) and sonochemical (BVO-S) methods. The morphological investigation of BVO-S showed hierarchical microspheres with diameter ranges of 1–6 μm, which is more prominent in size compared to BVO-N particles (100 nm- 1-μm in diameter). The nitric acid plays a crucial role in stabilizing the BiVO4 particles in the co-precipitation process, whereas ultrasonic waves predominantly control the spherical particle formation in the sonochemical route. The electrochemical performance of BVO-N and BVO-S was tested in a potassium hydroxide (KOH) electrolyte. The charge and discharge cycle experiments showed BVO-S microspheres are more highly stable than that BVO-N. The BVO-N starts to degrade with its initial capacitance beyond 1000 cycles. The poor stability of BVO-N may be due to the breakdown of surface-adsorbed charged ionic species. As a result, BVO-S performs with a higher specific capacitance value of 214 F/g compared to BVO-N (124 F/g). Trasatti analysis revealed a balanced, synergistic behaviour of pseudocapacitance (61 %) and electric double layer capacitance (39 %) at the BVO-S is responsible for their high specific capacitance compared to BVO-N. The BVO-S has low intrinsic resistance due to the highly denser micro-spherical structure, allowing electrolyte ions to access the inner and outer surfaces of the BVO-S. Interestingly, charge transfer resistance was decreased after the cyclic stability test due to electrochemical activation and facilitates fast ion transport increasing the surface contact area of active material at the electrode-electrolyte interface. We fabricate the asymmetric cell with BVO-S microspheres (anode), activated carbon particles (cathode) and Poly (ethylene oxide) (PEO) /Polyethene glycol dimethyl ether (PEGDME)/KOH gel-based electrolyte. This asymmetric supercapacitor performs with a specific capacitance value of 153 F/g at 0.3 A/g under the cell voltage of 1.2 V. Also, it delivers 30.6 Whkg−1 of energy density and 1983 W kg−1 of power density. The cyclic stability of 98 % over 5000 cycles was achieved in this configuration. This performance is appreciable compared to the previous work on BiVO4-based asymmetry supercapacitors, particularly a capacitance retention (%) and potential window. Overall, an acid-free sonochemical processing route reported in this work is highly environmentally friendly. Likewise, the sub-micron metal oxide particle significantly improves their electrochemical stability without the coalesced together with any carbonaceous material. It can be transferred to synthesizing a broader choice of metal oxide based for enhanced cyclability with effective utilization of their charge storage behaviour that will perform high-power storage, which powers short-distance electric transportation.