International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2023-06-30 , DOI: 10.1016/j.ijhydene.2023.06.139
Ainaa Nadhirah Zainon , Mahendra Rao Somalu , Audi Majdan Kamarul Bahrain , Andanastuti Muchtar , Nurul Akidah Baharuddin , Muhammed Ali S.A , Abdullah Abdul Samat , Nafisah Osman , Abul Kalam Azad
![]() |
This study investigates the influence of the sintering temperature on the properties of the screen-printed anode of the La0.6Sr1.4MnO4 (LSMO4) Ruddlesden‒Popper (R–P) perovskite for intermediate-temperature solid oxide fuel cell applications. LSMO4 precursor powders with a K2NiF4-type (I4/mmm space group) tetragonal structure, density of 5.823 g/cm3, and specific surface area of 2.121 m2/g were successfully synthesised through the citrate-nitrate method. Initially, the characterisation of LSMO4 anode powders was analyzed by X-ray diffraction, field emission scanning electron microscopy (FESEM), and Brunauer-Emmett-Teller analysis. Subsequently, an LSMO4 film was screen-printed onto LSGM substrates and sintered at four different temperatures: 1000 °C, 1100 °C, 1200 °C, and 1300 °C. The effect of the sintering temperature on the microstructure, electronic conductivity, and electrochemical performance of the screen-printed anode film was analyzed by FESEM, DC 4-point probe method, and electrochemical impedance spectroscopy (EIS). The different values of average surface porosities (21–35%) and anode film thickness (14–41 μm) resulting from various sintering temperatures significantly influenced the electronic conductivity and electrochemical performance of the anode films. The electrical conductivities of the anode films sintered at 1000 °C, 1100 °C, 1200 °C, and 1300 °C were found to be 1.53 S/cm, 1.95 S/cm, 3.30 S/cm, and 3.73 S/cm at 800 °C, respectively. The activation energy of anodes sintered at 1000–1300 °C was in the range of 0.61–0.72 eV. The EIS analysis showed that the LSMO4 anode film sintered at 1000 °C possessed the lowest ASR of 1.52 Ωcm2 at 800 °C under a wet gas mixture environment, 3 vol% H2O – 97 vol% (H2: N2 = 10 : 90). The findings of this study provide valuable insights into the design and optimization of R–P perovskite based anode materials.
中文翻译:

烧结温度对中温固体氧化物燃料电池LSMO4 Ruddlesden-Popper钙钛矿丝网印刷阳极性能的影响
本研究研究了烧结温度对用于中温固体氧化物燃料电池应用的La 0.6 Sr 1.4 MnO 4 (LSMO 4 ) Ruddlesden-Popper (R–P)钙钛矿丝网印刷阳极性能的影响。采用柠檬酸盐-硝酸盐法成功合成了具有K 2 NiF 4型(I4/mmm空间群)四方结构、密度为5.823 g/cm 3、比表面积为2.121 m 2 /g的LSMO 4前驱体粉末。最初,通过 X 射线衍射、场发射扫描电子显微镜 (FESEM) 和 Brunauer-Emmett-Teller 分析对LSMO 4阳极粉末的表征进行了分析。随后,将 LSMO 4薄膜丝网印刷到 LSGM 基板上,并在四种不同温度下烧结:1000 °C、1100 °C、1200 °C 和 1300 °C。采用FESEM、直流四点探针法和电化学阻抗谱(EIS)分析了烧结温度对丝网印刷阳极薄膜的微观结构、电子电导率和电化学性能的影响。不同的烧结温度导致的平均表面孔隙率(21-35%)和阳极膜厚度(14-41 μm)的不同值显着影响阳极膜的电子电导率和电化学性能。发现在1000℃、1100℃、1200℃和1300℃下烧结的阳极膜的电导率分别为1.53S/cm、1.95S/cm、3.30S/cm和3.73S/cm。分别为800°C。在1000-1300℃下烧结的阳极的活化能在0.61-0.72 eV范围内。EIS分析表明,在3 vol% H 2 O – 97 vol% (H 2 : N 2 = 10 : 90)。这项研究的结果为 R-P 钙钛矿基负极材料的设计和优化提供了宝贵的见解。