Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2023-06-22 , DOI: 10.1016/j.jctb.2023.06.003 Sergey Norin , Robin Thomas , Hein van der Holst
Let be a finite undirected graph. Orient the edges of G in an arbitrary way. A 2-cycle on G is a function such for each edge e, and are circulations on G, and whenever e and f have a common vertex. We show that each 2-cycle is a sum of three special types of 2-cycles: cycle-pair 2-cycles, Kuratowski 2-cycles, and quad 2-cycles. In the case that the graph is Kuratowski connected, we show that each 2-cycle is a sum of cycle-pair 2-cycles and at most one Kuratowski 2-cycle. Furthermore, if the graph is Kuratowski connected, we characterize when every Kuratowski 2-cycle is a sum of cycle-pair 2-cycles. A consequence of this is that if G is Kuratowski connected and either G is planar or G does not have a linkless embedding, then each 2-cycle on G is a sum of cycle-pair 2-cycles. A 2-cycle d on G is skew-symmetric if for all edges . We show that each skew-symmetric 2-cycle is a sum of two special types of skew-symmetric 2-cycles: skew-symmetric cycle-pair 2-cycles and skew-symmetric quad 2-cycles. In the case that the graph is Kuratowski connected, we show that each skew-symmetric 2-cycle is a sum of skew-symmetric cycle-pair 2-cycles. Similar results like this had previously been obtained by one of the authors for symmetric 2-cycles. Symmetric 2-cycles are 2-cycles d such that for all edges .
中文翻译:
关于图的 2 圈
让是有限无向图。以任意方式定向G的边。G上的 2 周期是一个函数这样对于每条边e,和是G上的循环,并且每当e和f有公共顶点时。我们证明每个 2 周期是三种特殊类型 2 周期的总和:周期对 2 周期、Kuratowski 2 周期和四 2 周期。在图是 Kuratowski 连接的情况下,我们表明每个 2-cycle 是循环对 2-cycle 的总和,并且最多有一个 Kuratowski 2-cycle。此外,如果图是 Kuratowski 连接的,我们可以表征每个 Kuratowski 2 周期是周期对 2 周期之和。这样做的结果是,如果G是 Kuratowski 连接的并且G是平面的或者G没有无链接嵌入,则G上的每个 2 周期都是周期对 2 周期的总和。G上的2 周期d是斜对称的,如果对于所有边缘。我们证明每个斜对称 2 周期是两种特殊类型的斜对称 2 周期的总和:斜对称周期对 2 周期和斜对称四 2 周期。在图是 Kuratowski 连接的情况下,我们证明每个斜对称 2 循环都是斜对称循环对 2 循环之和。一位作者之前曾针对对称 2 周期获得过类似的结果。对称 2 周期是 2 周期d,使得对于所有边缘。