当前位置: X-MOL 学术J. Comb. Theory B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On 2-cycles of graphs
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2023-06-22 , DOI: 10.1016/j.jctb.2023.06.003
Sergey Norin , Robin Thomas , Hein van der Holst

Let G=(V,E) be a finite undirected graph. Orient the edges of G in an arbitrary way. A 2-cycle on G is a function d:E2Z such for each edge e, d(e,) and d(,e) are circulations on G, and d(e,f)=0 whenever e and f have a common vertex. We show that each 2-cycle is a sum of three special types of 2-cycles: cycle-pair 2-cycles, Kuratowski 2-cycles, and quad 2-cycles. In the case that the graph is Kuratowski connected, we show that each 2-cycle is a sum of cycle-pair 2-cycles and at most one Kuratowski 2-cycle. Furthermore, if the graph is Kuratowski connected, we characterize when every Kuratowski 2-cycle is a sum of cycle-pair 2-cycles. A consequence of this is that if G is Kuratowski connected and either G is planar or G does not have a linkless embedding, then each 2-cycle on G is a sum of cycle-pair 2-cycles. A 2-cycle d on G is skew-symmetric if d(e,f)=d(f,e) for all edges e,fE. We show that each skew-symmetric 2-cycle is a sum of two special types of skew-symmetric 2-cycles: skew-symmetric cycle-pair 2-cycles and skew-symmetric quad 2-cycles. In the case that the graph is Kuratowski connected, we show that each skew-symmetric 2-cycle is a sum of skew-symmetric cycle-pair 2-cycles. Similar results like this had previously been obtained by one of the authors for symmetric 2-cycles. Symmetric 2-cycles are 2-cycles d such that d(e,f)=d(f,e) for all edges e,fE.



中文翻译:

关于图的 2 圈

G=V,是有限无向图。以任意方式定向G的边。G上的 2 周期是一个函数d2Z这样对于每条边ede,d,eG上的循环,并且de,F=0每当ef有公共顶点时。我们证明每个 2 周期是三种特殊类型 2 周期的总和:周期对 2 周期、Kuratowski 2 周期和四 2 周期。在图是 Kuratowski 连接的情况下,我们表明每个 2-cycle 是循环对 2-cycle 的总和,并且最多有一个 Kuratowski 2-cycle。此外,如果图是 Kuratowski 连接的,我们可以表征每个 Kuratowski 2 周期是周期对 2 周期之和。这样做的结果是,如果G是 Kuratowski 连接的并且G是平面的或者G没有无链接嵌入,则G上的每个 2 周期都是周期对 2 周期的总和。G上的2 周期d是斜对称的,如果de,F=-dF,e对于所有边缘e,Fε。我们证明每个斜对称 2 周期是两种特殊类型的斜对称 2 周期的总和:斜对称周期对 2 周期和斜对称四 2 周期。在图是 Kuratowski 连接的情况下,我们证明每个斜对称 2 循环都是斜对称循环对 2 循环之和。一位作者之前曾针对对称 2 周期获得过类似的结果。对称 2 周期是 2 周期d,使得de,F=dF,e对于所有边缘e,Fε

更新日期:2023-06-22
down
wechat
bug