当前位置:
X-MOL 学术
›
Annu. Rev. Resour. Econ.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The Rigor Revolution: New Standards of Evidence for Impact Assessment of International Agricultural Research
Annual Review of Resource Economics ( IF 4.2 ) Pub Date : 2023-06-29 , DOI: 10.1146/annurev-resource-101722-082519 James R. Stevenson 1, 2 , Karen Macours 3, 4 , Douglas Gollin 5
Annual Review of Resource Economics ( IF 4.2 ) Pub Date : 2023-06-29 , DOI: 10.1146/annurev-resource-101722-082519 James R. Stevenson 1, 2 , Karen Macours 3, 4 , Douglas Gollin 5
Affiliation
We take stock of the major changes in methodology for studying the impacts of international agricultural research, focusing on the period 2006–2020. Impact assessment of agricultural research has a long and recognized tradition. Until the mid-2000s, such assessments were dominated by a model of demand for and supply of agricultural products in partial equilibrium. The basic ideas for this approach were sketched out by Griliches more than half a century ago. We describe the implications of heightened standards of evidence for good practice in three domains of research design: causal inference, valid measurement, and statistical representativeness. We document advances in each of these domains and review recent evidence that demonstrates the lessons that can be learned from adopting these practices, emphasizing the importance of evidence at-scale, the need to consider portfolios of innovations at a national level, and the challenges of accounting for innovations that are promoted as bundles.
中文翻译:
严谨革命:国际农业研究影响评估的新证据标准
我们评估了研究国际农业研究影响的方法的主要变化,重点是 2006-2020 年期间。农业研究的影响评估有着悠久且公认的传统。直到 2000 年代中期,此类评估都由部分均衡的农产品供需模型主导。这种方法的基本思想是 Griliches 在半个多世纪前勾勒出来的。我们描述了提高证据标准对研究设计的三个领域良好实践的影响:因果推理、有效测量和统计代表性。我们记录了这些领域中的每一个的进展,并回顾了最近的证据,这些证据证明了可以从采用这些做法中吸取的经验教训,强调大规模证据的重要性,在国家层面考虑创新组合的必要性,以及核算作为捆绑推广的创新的挑战。
更新日期:2023-06-29
中文翻译:
严谨革命:国际农业研究影响评估的新证据标准
我们评估了研究国际农业研究影响的方法的主要变化,重点是 2006-2020 年期间。农业研究的影响评估有着悠久且公认的传统。直到 2000 年代中期,此类评估都由部分均衡的农产品供需模型主导。这种方法的基本思想是 Griliches 在半个多世纪前勾勒出来的。我们描述了提高证据标准对研究设计的三个领域良好实践的影响:因果推理、有效测量和统计代表性。我们记录了这些领域中的每一个的进展,并回顾了最近的证据,这些证据证明了可以从采用这些做法中吸取的经验教训,强调大规模证据的重要性,在国家层面考虑创新组合的必要性,以及核算作为捆绑推广的创新的挑战。