由灰霉病引起的灰霉病是水果和蔬菜采后最常见的恶化病害之一。自噬是真核生物中高度保守的机制,参与对抗应激的防御反应,特别是植物中的病原体感染。然而,阐明自噬在采后水果抗病性中的作用和调节机制的研究还很有限。在这方面,我们早期的实验表明,50 mmol L -1氯化锂(LiCl)和5 mmol L -1羟氯喹(HCQ)可能分别是自噬激活剂和自噬抑制剂,这可以揭示自噬在采后中的作用水果对灰霉病的防御。目前的研究结果进一步阐明,LiCl介导的自噬活性增加表明自噬相关基因的表达水平和自噬体数量随之增加,而HCQ治疗则逆转了这一现象。LiCl激活的自噬抑制了这种疾病,表现为较低的疾病发生率和病灶直径,而HCQ的应用在很大程度上逆转了这种现象。转录组分析表明,LiCl处理和对照果实之间的差异表达基因涉及次生代谢途径,以苯丙素生物合成和活性氧(ROS)代谢为代表。LiCl处理通过激活苯丙素生物合成促进总酚的积累。LiCl 处理还通过增加抗氧化酶活性和调节抗坏血酸-谷胱甘肽循环来平衡 ROS 稳态。此外,LiCl处理和对照水果之间差异表达的转录因子,如WRKYs、MYBs、AP2、bHLH、HB-other和MYB相关家族可能会特异性影响参与ROS代谢和苯丙素生物合成的基因的转录。同时,MYB(Solyc05g009230.1)、bHLH(Solyc01g090790.2)和MYB相关(Solyc11g010710.1)转录因子也通过直接结合参与自噬。和 MYB 相关家族可能特别影响参与 ROS 代谢和苯丙素生物合成的基因的转录。同时,MYB(Solyc05g009230.1)、bHLH(Solyc01g090790.2)和MYB相关(Solyc11g010710.1)转录因子也通过直接结合参与自噬。和 MYB 相关家族可能特别影响参与 ROS 代谢和苯丙素生物合成的基因的转录。同时,MYB(Solyc05g009230.1)、bHLH(Solyc01g090790.2)和MYB相关(Solyc11g010710.1)转录因子也通过直接结合参与自噬。SlATG(Solyc08g078820.3 和 Solyc01g068060.3)。这些发现表明,LiCl诱导的自噬导致防御酶活性增加、苯丙素生物合成的激活以及ROS稳态的平衡,这有助于采后水果的抗病性。
"点击查看英文标题和摘要"
Involvement and Possible Mechanism of Autophagy in Postharvest Tomato Fruit Resistance Against Botrytis cinerea
Gray mold caused by Botrytis cinerea is one of the most prevailing deteriorative postharvest diseases in fruit and vegetables. Autophagy, a highly conserved mechanism in eukaryotes, is involved in defense responses against stresses, especially for pathogens infection in plants. However, limited studies have been conducted to elucidate the roles and regulatory mechanisms of autophagy in postharvest fruit disease resistance. In this regard, our earlier experimentation indicated that 50 mmol L−1 lithium chloride (LiCl) and 5 mmol L−1 hydroxychloroquine (HCQ) could be an autophagy activator and an autophagy inhibitor, respectively, that can reveal the role of autophagy in postharvest fruit defense against B. cinerea. Present findings further elaborated that the LiCl-mediated increase in autophagy activity showed concomitant higher expression levels of autophagy-related genes and the number of autophagosomes, whereas HCQ treatment reversed the phenomenon. LiCl-activated autophagy inhibited the disease as evidenced by lower disease incidence and lesion diameter, whereas HCQ application largely reversed this phenomenon. Transcriptome analysis revealed that the differentially expressed genes between LiCl-treated and control fruit were involved in the secondary metabolic pathway, represented by phenylpropanoid biosynthesis and reactive oxygen species (ROS) metabolism. LiCl treatment promoted the accumulation of total phenolics by activating phenylpropanoid biosynthesis. LiCl treatment also balanced ROS homeostasis by increasing antioxidant enzyme activities and regulating the ascorbate–glutathione cycle. Moreover, differentially expressed transcription factors between LiCl-treated and control fruit, such as WRKYs, MYBs, AP2, bHLH, HB-other, and MYB-related families might specifically affect the transcription of genes involved in ROS metabolism and phenylpropanoid biosynthesis. Meanwhile, MYBs (Solyc05g009230.1), bHLH (Solyc01g090790.2), and MYB-related (Solyc11g010710.1) transcription factors also participated in autophagy by directly binding to SlATGs (Solyc08g078820.3 and Solyc01g068060.3). These findings suggest that LiCl-induced autophagy results in increased activities of defense enzymes, activation of phenylpropanoid biosynthesis, and balance of ROS homeostasis, which contributes to disease resistance in postharvest fruit.