当前位置:
X-MOL 学术
›
Polym. Compos.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cardanol derivatives as compatibilizers for strengthening and toughening polylactic acid/bamboo fiber bio-composites
Polymer Composites ( IF 4.8 ) Pub Date : 2023-06-21 , DOI: 10.1002/pc.27518 Xinyu Song 1, 2 , Caili Zhang 2 , Yang Yang 2 , Fan Yang 2 , Yunxuan Weng 2
Polymer Composites ( IF 4.8 ) Pub Date : 2023-06-21 , DOI: 10.1002/pc.27518 Xinyu Song 1, 2 , Caili Zhang 2 , Yang Yang 2 , Fan Yang 2 , Yunxuan Weng 2
Affiliation
The application of bamboo fibers (BFs) as a reinforcing filler in polylactic acid (PLA) is hindered by their poor compatibility owing to the intrinsic hydrophilia of BFs and the hydrophobicity of PLA. To solve this issue, cardanol (CD) and epoxidized cardanol glycidyl ether (ECGE) were used as compatibilizers to strengthen and toughen PLA/BF bio-composites, to the best of our knowledge, preparing PLA/BF/CD and PLA/BF/ECGE bio-composites. The impact strengths of the synthesized bio-composites increased from 7.75 to 23.75 and 7.75 to 23.95 kJ/m2, respectively, compared with that of a PLA/BF composite without compatibilizer. The investigation of the mechanical properties, crystallization, fractured surface morphology, and solvent stress-cracking resistance properties revealed that the toughening mechanism of the PLA/BF/CD bio-composites are mainly based on the plasticization of CD, which results in high impact toughness but low tensile strength. Moreover, the modification with ECGE improves the impact and tensile strengths of the bio-composite owing to the following factors: (1) the epoxy groups of ECGE generate strong interactions with the BF surface and PLA to form an enhanced interfacial structure; (2) when present at high concentrations, chain extension reaction between ECGE and PLA to increase the molecular chain entanglement of PLA; and (3) upon curing and crosslinking, ECGE forms an entangled network structure that toughens the matrix.
中文翻译:
腰果酚衍生物作为增韧聚乳酸/竹纤维生物复合材料的增容剂
由于竹纤维固有的亲水性和PLA的疏水性,相容性差,阻碍了竹纤维(BF)作为聚乳酸(PLA)增强填料的应用。为了解决这个问题,据我们所知,腰果酚(CD)和环氧化腰果酚缩水甘油醚(ECGE)被用作增容剂来增强和增韧PLA/BF生物复合材料,制备了PLA/BF/CD和PLA/BF/ ECGE 生物复合材料。合成的生物复合材料的冲击强度从7.75 kJ/m 2 增加到23.75 和7.75 kJ/m 2增加到23.95 kJ/m 2分别与不含增容剂的 PLA/BF 复合材料相比。对机械性能、结晶、断裂表面形貌和耐溶剂应力开裂性能的研究表明,PLA/BF/CD生物复合材料的增韧机制主要基于CD的塑化,从而产生高冲击韧性但抗拉强度较低。此外,ECGE的改性提高了生物复合材料的冲击和拉伸强度,原因如下:(1)ECGE的环氧基团与BF表面和PLA产生强烈的相互作用,形成增强的界面结构;(2)当高浓度存在时,ECGE与PLA之间发生扩链反应,增加PLA的分子链缠结;(3)固化和交联后,
更新日期:2023-06-21
中文翻译:
腰果酚衍生物作为增韧聚乳酸/竹纤维生物复合材料的增容剂
由于竹纤维固有的亲水性和PLA的疏水性,相容性差,阻碍了竹纤维(BF)作为聚乳酸(PLA)增强填料的应用。为了解决这个问题,据我们所知,腰果酚(CD)和环氧化腰果酚缩水甘油醚(ECGE)被用作增容剂来增强和增韧PLA/BF生物复合材料,制备了PLA/BF/CD和PLA/BF/ ECGE 生物复合材料。合成的生物复合材料的冲击强度从7.75 kJ/m 2 增加到23.75 和7.75 kJ/m 2增加到23.95 kJ/m 2分别与不含增容剂的 PLA/BF 复合材料相比。对机械性能、结晶、断裂表面形貌和耐溶剂应力开裂性能的研究表明,PLA/BF/CD生物复合材料的增韧机制主要基于CD的塑化,从而产生高冲击韧性但抗拉强度较低。此外,ECGE的改性提高了生物复合材料的冲击和拉伸强度,原因如下:(1)ECGE的环氧基团与BF表面和PLA产生强烈的相互作用,形成增强的界面结构;(2)当高浓度存在时,ECGE与PLA之间发生扩链反应,增加PLA的分子链缠结;(3)固化和交联后,