当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%
Nature Communications ( IF 14.7 ) Pub Date : 2023-06-26 , DOI: 10.1038/s41467-023-39290-y
Austin M K Fehr 1 , Ayush Agrawal 1 , Faiz Mandani 1 , Christian L Conrad 1 , Qi Jiang 2 , So Yeon Park 2 , Olivia Alley 3 , Bor Li 4 , Siraj Sidhik 5 , Isaac Metcalf 5 , Christopher Botello 1 , James L Young 2 , Jacky Even 6 , Jean Christophe Blancon 1 , Todd G Deutsch 2 , Kai Zhu 2 , Steve Albrecht 4 , Francesca M Toma 3 , Michael Wong 1 , Aditya D Mohite 1, 5
Affiliation  

Achieving high solar-to-hydrogen (STH) efficiency concomitant with long-term durability using low-cost, scalable photo-absorbers is a long-standing challenge. Here we report the design and fabrication of a conductive adhesive-barrier (CAB) that translates >99% of photoelectric power to chemical reactions. The CAB enables halide perovskite-based photoelectrochemical cells with two different architectures that exhibit record STH efficiencies. The first, a co-planar photocathode-photoanode architecture, achieved an STH efficiency of 13.4% and 16.3 h to t60, solely limited by the hygroscopic hole transport layer in the n-i-p device. The second was formed using a monolithic stacked silicon-perovskite tandem, with a peak STH efficiency of 20.8% and 102 h of continuous operation before t60 under AM 1.5G illumination. These advances will lead to efficient, durable, and low-cost solar-driven water-splitting technology with multifunctional barriers.



中文翻译:

集成卤化物钙钛矿光电化学电池,太阳能驱动水分解效率高达20.8%

使用低成本、可扩展的光吸收器实现高太阳能制氢(STH)效率并同时具有长期耐用性是一项长期挑战。在此,我们报告了导电粘合剂屏障 (CAB) 的设计和制造,该粘合剂屏障可将 > 99% 的光电功率转化为化学反应。CAB 使基于卤化物钙钛矿的光电化学电池具有两种不同的架构,表现出创纪录的 STH 效率。第一种是共面光电阴极-光电阳极架构,实现了 13.4% 的 STH 效率和 16.3 h 至 t 60,仅受压区器件中吸湿空穴传输层的限制。第二个是使用单片堆叠硅钙钛矿串联形成的,峰值 STH 效率为 20.8%,并且在 t 60之前连续运行 102 小时。AM 1.5G 照明下。这些进步将带来高效、耐用、低成本、具有多功能屏障的太阳能驱动水分解技术。

更新日期:2023-06-27
down
wechat
bug