Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Can the Sublimation Enthalpy Be Obtained Using Atomic Force Microscopy with Heating? A PETN Nanofilm Case
Langmuir ( IF 3.7 ) Pub Date : 2023-06-23 , DOI: 10.1021/acs.langmuir.3c00568 Ekaterina Kosareva 1 , Radmir Gainutdinov 2 , Anna Nikolskaia 3 , Alla N Pivkina 1 , Nikita V Muravyev 1
Langmuir ( IF 3.7 ) Pub Date : 2023-06-23 , DOI: 10.1021/acs.langmuir.3c00568 Ekaterina Kosareva 1 , Radmir Gainutdinov 2 , Anna Nikolskaia 3 , Alla N Pivkina 1 , Nikita V Muravyev 1
Affiliation
Vaporization is an important aspect of the performance and detection of energetic materials. While the traditional techniques concentrate on bulk property changes during sublimation, atomic force microscopy (AFM) offers the possibility to track particle volume changes under heating. Ideally, this will enable the investigation of chemicals that are challenging to study using conventional vaporization analysis methods, i.e., those having low thermal stability and/or low volatility. However, prior studies have demonstrated that novel structural effects at the nanoscale may interfere with sublimation mass loss. The present work aims to provide a comprehensive investigation of the sublimation of pentaerythritol tetranitrate (PETN) thin films with respect to the measurement parameters, the heating technique, the sample composition, and the type of the substrate. We observed the low-temperature recrystallization of thin-film islands during heating together with the sublimation process; this was demonstrated by the unexpected local increase in volume with temperature. Overall, AFM allows us to set up a precise nanoscale vaporization experiment and, in some instances, to obtain a reliable estimate of the sublimation enthalpy. However, it is crucial to consider the sample’s morphology as well as any concurrent structural transformations in order to ensure the validity of the results.
中文翻译:
可以使用加热的原子力显微镜获得升华焓吗?PETN纳米薄膜案例
汽化是含能材料性能和检测的一个重要方面。传统技术专注于升华过程中体积性质的变化,而原子力显微镜 (AFM) 提供了跟踪加热下颗粒体积变化的可能性。理想情况下,这将能够研究使用传统汽化分析方法难以研究的化学品,即具有低热稳定性和/或低挥发性的化学品。然而,先前的研究表明,纳米尺度的新颖结构效应可能会干扰升华质量损失。目前的工作旨在对季戊四醇四硝酸酯(PETN)薄膜的升华进行全面的研究,包括测量参数、加热技术、样品成分、以及基材的类型。我们观察到薄膜岛在加热过程中的低温再结晶以及升华过程;体积随温度的意外局部增加证明了这一点。总体而言,AFM 使我们能够建立精确的纳米级汽化实验,并在某些情况下获得升华焓的可靠估计。然而,为了确保结果的有效性,考虑样品的形态以及任何并发的结构转变至关重要。在某些情况下,以获得升华焓的可靠估计。然而,为了确保结果的有效性,考虑样品的形态以及任何并发的结构转变至关重要。在某些情况下,以获得升华焓的可靠估计。然而,为了确保结果的有效性,考虑样品的形态以及任何并发的结构转变至关重要。
更新日期:2023-06-23
中文翻译:
可以使用加热的原子力显微镜获得升华焓吗?PETN纳米薄膜案例
汽化是含能材料性能和检测的一个重要方面。传统技术专注于升华过程中体积性质的变化,而原子力显微镜 (AFM) 提供了跟踪加热下颗粒体积变化的可能性。理想情况下,这将能够研究使用传统汽化分析方法难以研究的化学品,即具有低热稳定性和/或低挥发性的化学品。然而,先前的研究表明,纳米尺度的新颖结构效应可能会干扰升华质量损失。目前的工作旨在对季戊四醇四硝酸酯(PETN)薄膜的升华进行全面的研究,包括测量参数、加热技术、样品成分、以及基材的类型。我们观察到薄膜岛在加热过程中的低温再结晶以及升华过程;体积随温度的意外局部增加证明了这一点。总体而言,AFM 使我们能够建立精确的纳米级汽化实验,并在某些情况下获得升华焓的可靠估计。然而,为了确保结果的有效性,考虑样品的形态以及任何并发的结构转变至关重要。在某些情况下,以获得升华焓的可靠估计。然而,为了确保结果的有效性,考虑样品的形态以及任何并发的结构转变至关重要。在某些情况下,以获得升华焓的可靠估计。然而,为了确保结果的有效性,考虑样品的形态以及任何并发的结构转变至关重要。