当前位置: X-MOL 学术Found. Comput. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Further $$\exists {\mathbb {R}}$$ -Complete Problems with PSD Matrix Factorizations
Foundations of Computational Mathematics ( IF 2.5 ) Pub Date : 2023-06-22 , DOI: 10.1007/s10208-023-09610-1
Yaroslav Shitov

Let A be an \(m\times n\) matrix with nonnegative real entries. The psd rank of A is the smallest k for which there exist two families \((P_1,\ldots ,P_m)\) and \((Q_1,\ldots ,Q_n)\) of positive semidefinite Hermitian \(k\times k\) matrices such that \(A(i|j)={\text {tr}}(P_i Q_j)\) for all i, j. Several questions on the algorithmic complexity of related matrix invariants were posed in recent literature: (i) by Stark (for the psd rank as defined above), (ii) by Goucha, Gouveia (for phaseless rank, which appears if the matrices \(P_i\) and \(Q_j\) are required to be of rank one in the above definition), (iii) by Gribling, de Laat, Laurent (for cpsd rank, which corresponds to the situation when A is symmetric and \(P_i=Q_i\) for all i). We solve these questions by proving that the decision versions of the corresponding invariants are \(\exists {\mathbb {R}}\)-complete. In addition, we give a polynomial time recognition algorithm for matrices of bounded cpsd rank.



中文翻译:

进一步 $$\exists {\mathbb {R}}$$ - PSD 矩阵分解的完整问题

A为具有非负实数项的\(m\times n\)矩阵。 Apsd 秩是存在正半定 Hermitian \(k\times k两个族\((P_1,\ldots ,P_m)\)\((Q_1,\ldots ,Q_n)\)的最小k \)矩阵使得所有i , j满足\(A(i|j)={\text {tr}}(P_i Q_j)\)。最近的文献中提出了有关相关矩阵不变量的算法复杂性的几个问题:(i)Stark(对于上面定义的 psd 秩),(ii)Goucha,Gouveia(对于无相秩,如果矩阵\(在上述定义中, P_i\)\(Q_j\)必须为秩一),(iii) 由 Gribling、de Laat、Laurent 提出(对于cpsd 秩,对应于A对称且\(P_i =Q_i\)对于所有i )。我们通过证明相应不变量的决策版本是完整的来解决这些问题。此外,我们还给出了有界 cpsd 秩矩阵的多项式时间识别算法。

更新日期:2023-06-22
down
wechat
bug