当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Combined High-Throughput DFT and ML Screening of Transition Metal Nitrides for Electrochemical CO2 Reduction
ACS Catalysis ( IF 11.3 ) Pub Date : 2023-06-22 , DOI: 10.1021/acscatal.3c01249 Asfaw G. Yohannes 1 , Chaehyeon Lee 2 , Pooya Talebi 1 , Dong Hyeon Mok 2 , Mohammadreza Karamad 3 , Seoin Back 2 , Samira Siahrostami 1
ACS Catalysis ( IF 11.3 ) Pub Date : 2023-06-22 , DOI: 10.1021/acscatal.3c01249 Asfaw G. Yohannes 1 , Chaehyeon Lee 2 , Pooya Talebi 1 , Dong Hyeon Mok 2 , Mohammadreza Karamad 3 , Seoin Back 2 , Samira Siahrostami 1
Affiliation
The electrochemical reduction of CO2 (CO2RR) using renewable electricity has the potential to reduce atmospheric CO2 levels while producing valuable chemicals and fuels. However, the practical implementation of this technology is limited by the activity, selectivity, and stability of catalyst materials. In this study, we employ high-throughput density functional theory (DFT) calculations to screen ∼800 transition metal nitrides and identify potential catalysts for CO2RR. The stability and activity of the screened materials were thoroughly evaluated via thermodynamic analysis, revealing Co, Cr, and Ti transition metal nitrides as the most promising candidates. Additionally, we conduct a feature importance analysis using machine learning (ML) regression models for binding energy prediction and determine the primary factors influencing the stability of catalysts. We show that the group number of metals has a significant impact on the binding energy of *OH and thus on the stability of the catalysts. We anticipate that this combined approach of high-throughput DFT screening and design strategy derived from ML regression analysis could effectively lead to the discovery of improved energy materials.
中文翻译:
用于电化学 CO2 还原的过渡金属氮化物的高通量 DFT 和 ML 联合筛选
使用可再生电力电化学还原 CO 2 (CO 2 RR) 有可能降低大气中 CO 2水平,同时生产有价值的化学品和燃料。然而,该技术的实际应用受到催化剂材料的活性、选择性和稳定性的限制。在本研究中,我们采用高通量密度泛函理论(DFT)计算来筛选~800种过渡金属氮化物并识别CO 2的潜在催化剂RR。通过热力学分析对筛选材料的稳定性和活性进行了彻底评估,表明钴、铬和钛过渡金属氮化物是最有前途的候选材料。此外,我们使用机器学习(ML)回归模型进行特征重要性分析以预测结合能,并确定影响催化剂稳定性的主要因素。我们表明,金属的族数对 *OH 的结合能有显着影响,从而对催化剂的稳定性有显着影响。我们预计,这种高通量 DFT 筛选和源自 ML 回归分析的设计策略的组合方法可以有效地发现改进的能源材料。
更新日期:2023-06-22
中文翻译:
用于电化学 CO2 还原的过渡金属氮化物的高通量 DFT 和 ML 联合筛选
使用可再生电力电化学还原 CO 2 (CO 2 RR) 有可能降低大气中 CO 2水平,同时生产有价值的化学品和燃料。然而,该技术的实际应用受到催化剂材料的活性、选择性和稳定性的限制。在本研究中,我们采用高通量密度泛函理论(DFT)计算来筛选~800种过渡金属氮化物并识别CO 2的潜在催化剂RR。通过热力学分析对筛选材料的稳定性和活性进行了彻底评估,表明钴、铬和钛过渡金属氮化物是最有前途的候选材料。此外,我们使用机器学习(ML)回归模型进行特征重要性分析以预测结合能,并确定影响催化剂稳定性的主要因素。我们表明,金属的族数对 *OH 的结合能有显着影响,从而对催化剂的稳定性有显着影响。我们预计,这种高通量 DFT 筛选和源自 ML 回归分析的设计策略的组合方法可以有效地发现改进的能源材料。