当前位置: X-MOL 学术Cryst. Growth Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cage-Space-Partitioned Metal–Organic Frameworks for Efficient Carbon Dioxide Capture and Conversion
Crystal Growth & Design ( IF 3.2 ) Pub Date : 2023-06-21 , DOI: 10.1021/acs.cgd.3c00284
Jie Meng 1 , Jing Zhang 1 , Shu-Cong Fan 1 , Ying Wang 1 , Peng Zhang 1 , Wenyu Yuan 1 , Quan-Guo Zhai 1
Affiliation  

Metal–organic frameworks (MOFs) have demonstrated potential for CO2 capture and conversion, which are of great importance to alleviate current global environmental problems. Considering that MOFs with large pores are not conducive to adsorption under atmospheric environments, it is critical to control MOF materials with suitable pore sizes and catalytic sites to facilitate CO2 adsorption and fixation. Based on this, cage space partition (CSP), a new strategy to precisely regulate the pore sizes of MOFs, is proposed herein. The feasibility of the CSP strategy is demonstrated in an extra-large metal–organic cage ([M60(BTC)24], M = Co or Ni, BTC = benzene-1,3,5-tricarboxylate), which connects adjacent small cages ([M12(BTC)12]) to form a parent skeleton. For the first CSP process, four typical pyridine-based triangular ligands (TPT, 2,4,6-tris(4-pyridyl)-1,3,5-triazine) are symmetrically inserted into the M60-cage via open metal sites, which transfer the parent skeleton into a novel CSP-MOF (SNNU-337). Furthermore, two larger tri-pyridine ligands (TPHAP, 2,5,8-tri(40-pyridyl)-1,3,4,6,7,9-hexaazaphenalene) are involved to fulfill the second CSP process through residue open metal sites distributed on the inner cage surface, which lead to another isostructural CSP-MOF material (SNNU-338). Oriented by the continuous π–π interactions, the trapped TPT and TPHAP partitioners are divided into two groups, which finally divided the whole large pore into seven small sections. Benefiting from the two-step CSP process, the low-pressure CO2 adsorption capacity of MOFs is remarkably enhanced. Grand canonical Monte Carlo simulations clearly indicate that the introduction of partition agents successfully regulates the internal aperture of the cage and thus enhances the interactions between the MOF skeleton and CO2 molecules. Moreover, the synergistic effects of CSP in large M60-cages and open metal sites in M12-cages make SNNU-337/338 MOFs excellent catalysts to catalyze CO2 cycloaddition with various epoxides.

中文翻译:

用于高效二氧化碳捕获和转化的笼空间分隔金属有机框架

金属有机框架(MOF)已显示出CO 2捕获和转化的潜力,这对于缓解当前的全球环境问题具有重要意义。考虑到大孔MOF不利于大气环境下的吸附,控制MOF材料具有合适的孔径和催化位点对于促进CO 2吸附和固定至关重要。在此基础上,本文提出了一种精确调节MOF孔径的新策略——笼空间分区(CSP)。CSP策略的可行性在超大金属有机笼([M 60 (BTC) 24 ],M = Co或Ni,BTC =苯-1,3,5-三羧酸盐)中得到证明,该笼连接相邻的小金属有机笼笼子([M 12(BTC) 12 ]) 形成父骨架。对于第一个 CSP 过程,将四个典型的吡啶基三角形配体(TPT、2,4,6-三(4-吡啶基)-1,3,5-三嗪)对称插入到 M 60-通过开放金属位点形成笼,将母体骨架转移到新型 CSP-MOF (SNNU-337) 中。此外,两个较大的三吡啶配体(TPHAP,2,5,8-三(40-吡啶基)-1,3,4,6,7,9-六氮杂苯)参与通过残余开放金属完成第二个CSP过程位点分布在内笼表面,这导致了另一种同构 CSP-MOF 材料 (SNNU-338)。在连续的π-π相互作用的作用下,被捕获的TPT和TPHAP分配器被分成两组,最终将整个大孔隙分成七个小部分。受益于两步 CSP 工艺,低压 CO 2MOFs的吸附能力显着增强。大正则蒙特卡罗模拟清楚地表明,分配剂的引入成功地调节了笼的内部孔径,从而增强了MOF骨架与CO 2分子之间的相互作用。此外,大型M 60笼中的CSP和M 12笼中的开放金属位点的协同效应使得SNNU-337/338 MOFs成为催化CO 2与各种环氧化物环加成的优异催化剂。
更新日期:2023-06-21
down
wechat
bug