当前位置:
X-MOL 学术
›
J. Appl. Polym. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic intrafibrillar/extrafibrillar mineralization of collagen fibrils and scaffolds enhanced by introducing polyacrylamide to PILP for osteogenic differentiation
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2023-06-20 , DOI: 10.1002/app.54275 Chengde Liu 1, 2 , Luyao Jiang 1, 2 , Wanting Du 1, 2 , Xitong Cheng 1, 2 , Zheng Zhao 1, 2 , Jinyan Wang 1, 2 , Xigao Jian 3
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2023-06-20 , DOI: 10.1002/app.54275 Chengde Liu 1, 2 , Luyao Jiang 1, 2 , Wanting Du 1, 2 , Xitong Cheng 1, 2 , Zheng Zhao 1, 2 , Jinyan Wang 1, 2 , Xigao Jian 3
Affiliation
Mineralization can help improve the mechanical properties and degradation rates of collagen scaffolds while ensuring good biocompatibility, thereby providing a suitable microenvironment for osteogenic differentiation. Intrafibrillar/extrafibrillar mineralization of collagen is promoted by polymer-induced liquid precursors (PILP). In this study, polyacrylamide (PAM) was introduced to PILP which synergistically mineralized collagen scaffold intrafibrillarly and extrafibrillarly. PAM and polyacrylic acid (PAA) can stabilize the amorphous calcium phosphate (ACP), to form a PILP of PAM and PAA/ACP. As a control, another scaffold material was formed using the conventional mineralization method, that is, soaking collagen in a simulated body fluid. Collagen mineralization was characterized using SEM and TEM. After 7 days of mineralization with PILP, intrafibrillar crystallization of collagen was significantly higher than that in the control group, and the stiffness and modulus of this scaffold material significantly increased. Cellular experiment results indicated that the PILP-mineralized collagen scaffold was biocompatible and promoted the osteogenic differentiation of MC3T3-E1 pre-osteoblasts. Biomimetic mineralization by PILP will assist the fabrication of mineralized collagen scaffold for bone repair applications.
中文翻译:
通过将聚丙烯酰胺引入 PILP 中,增强胶原纤维和支架的纤维内/纤维外协同矿化以促进成骨分化
矿化有助于提高胶原支架的力学性能和降解率,同时保证良好的生物相容性,从而为成骨分化提供合适的微环境。聚合物诱导的液体前体 (PILP) 促进胶原纤维内/纤维外矿化。在本研究中,将聚丙烯酰胺(PAM)引入到 PILP 中,可协同矿化纤维内和纤维外的胶原支架。PAM和聚丙烯酸(PAA)可以稳定无定形磷酸钙(ACP),形成PAM和PAA/ACP的PILP。作为对照,使用传统的矿化方法形成另一种支架材料,即将胶原蛋白浸泡在模拟体液中。使用 SEM 和 TEM 表征胶原蛋白矿化。经过 7 天的 PILP 矿化后,胶原蛋白的纤维内结晶明显高于对照组,并且该支架材料的刚度和模量显着增加。细胞实验结果表明,PILP矿化胶原支架具有生物相容性,可促进MC3T3-E1前成骨细胞的成骨分化。PILP 的仿生矿化将有助于制造用于骨修复应用的矿化胶原蛋白支架。
更新日期:2023-06-20
中文翻译:
通过将聚丙烯酰胺引入 PILP 中,增强胶原纤维和支架的纤维内/纤维外协同矿化以促进成骨分化
矿化有助于提高胶原支架的力学性能和降解率,同时保证良好的生物相容性,从而为成骨分化提供合适的微环境。聚合物诱导的液体前体 (PILP) 促进胶原纤维内/纤维外矿化。在本研究中,将聚丙烯酰胺(PAM)引入到 PILP 中,可协同矿化纤维内和纤维外的胶原支架。PAM和聚丙烯酸(PAA)可以稳定无定形磷酸钙(ACP),形成PAM和PAA/ACP的PILP。作为对照,使用传统的矿化方法形成另一种支架材料,即将胶原蛋白浸泡在模拟体液中。使用 SEM 和 TEM 表征胶原蛋白矿化。经过 7 天的 PILP 矿化后,胶原蛋白的纤维内结晶明显高于对照组,并且该支架材料的刚度和模量显着增加。细胞实验结果表明,PILP矿化胶原支架具有生物相容性,可促进MC3T3-E1前成骨细胞的成骨分化。PILP 的仿生矿化将有助于制造用于骨修复应用的矿化胶原蛋白支架。