当前位置: X-MOL 学术J. Comb. Theory B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Local Hadwiger's Conjecture
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2023-06-20 , DOI: 10.1016/j.jctb.2023.05.004
Benjamin Moore , Luke Postle , Lise Turner

We propose local versions of Hadwiger's Conjecture, where only balls of radius Ω(log(v(G))) around each vertex are required to be Kt-minor-free. We ask: if a graph is locally-Kt-minor-free, is it t-colourable? We show that the answer is yes when t5, even in the stronger setting of list-colouring, and we complement this result with a O(logv(G))-round distributed colouring algorithm in the LOCAL model. Further, we show that for large enough values of t, we can list-colour locally-Kt-minor-free graphs with 13max{h(t),312(t1)}) colours, where h(t) is any value such that all Kt-minor-free graphs are h(t)-list-colourable. We again complement this with a O(logv(G))-round distributed algorithm.



中文翻译:

局部哈维格猜想

我们提出了哈维格猜想的本地版本,其中只有半径的球Ω日志vG每个顶点周围都需要Kt-无未成年人。我们问:如果一个图是局部的-Kt-无未成年人,可着色吗?我们证明答案是肯定的t5,即使在更强的列表着色设置中,我们用日志vG-LOCAL模型中的圆形分布式着色算法。此外,我们表明,对于足够大的t值,我们可以在本地列出颜色-Kt-无次要图表13最大限度{Ht,312t-1}颜色,哪里Ht是任何值使得所有Kt-无次要图是Ht-列表可着色。我们再次补充这一点日志vG-轮分布式算法。

更新日期:2023-06-20
down
wechat
bug