当前位置:
X-MOL 学术
›
Int. J. Hydrogen Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic effect of hydrogen spillover and nano-confined AlH3 on room temperature hydrogen storage in MOFs: By GCMC, DFT and experiments
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2023-06-17 , DOI: 10.1016/j.ijhydene.2023.05.227 Xuan Zhang , Qing-rong Zheng , Hong-zhou He
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2023-06-17 , DOI: 10.1016/j.ijhydene.2023.05.227 Xuan Zhang , Qing-rong Zheng , Hong-zhou He
In order to enhance the hydrogen storage capacity of Metal-Organic Frameworks (MOFs) under moderate conditions, a high-throughput screen was used to evaluate 7622 MOFs with a Pore Limit Diameter (PLD) greater than 2.89 Å and less than 10 Å. The hydrogen adsorption capacity at 25 °C and 1 bar was calculated using grand canonical Monte Carlo (GCMC) to comprehensively evaluate the effect of pore structure characteristics on the hydrogen storage capacity of MOFs. The optimal composite mass ratio between carbon-based materials, transition metals, and MOFs was determined by Density Functional Theory (DFT). The mechanism of hydrogen spillover affecting the hydrogen storage capacity of MOFs was analyzed by preparation, characterization, and hydrogen adsorption capacity testing. To further enhance the hydrogen storage capacity of MOFs composites and improve the kinetic properties and reversibility of metal hydrides, aluminum hydride (AlH3 ) was nano-confined in MOF@carbon matrix material@transition metal to form new nano-confined composites with improved dehydrogenation temperature and reduced reversibility conditions. The results showed that MOFs with a PLD in the range of 7–10 Å, porosity in the range of 0.75–0.90, and pore volume in the range of 1.4–2.2 cm3 /g possess high hydrogen storage capacity. Compared to pristine MOFs, the hydrogen storage capacity of the composites with induced hydrogen spillover is at least 5 times higher. The new composites with improved kinetic hydrogen release characteristics after nano-confined AlH3 achieve reversible hydrogen release at 150 °C and 70 bar.
中文翻译:
氢溢出和纳米限域 AlH3 对 MOF 室温储氢的协同效应 - GCMC、DFT 和实验
为了在中等条件下提高金属有机框架 (MOF) 的储氢能力,使用高通量筛选来评估孔径极限直径 (PLD) 大于 2.89 Å 且小于 10 Å 的 7622 个 MOF。使用大正则蒙特卡洛 (GCMC) 计算 25 °C 和 1 bar 下的氢吸附容量,以综合评价孔隙结构特征对 MOF 储氢容量的影响。碳基材料、过渡金属和 MOF 之间的最佳复合质量比由密度泛函理论 (DFT) 确定。通过制备、表征和氢吸附容量测试,分析了氢气溢出影响 MOF 储氢能力的机制。为了进一步增强MOFs复合材料的储氢能力,改善金属氢化物的动力学性能和可逆性,将氢化铝(AlH3)纳米限制在MOF@carbon基体material@transition金属中,形成新的纳米限制复合材料,提高了脱氢温度,降低了可逆性。结果表明,PLD 在 7-10 Å 范围内、孔隙率在 0.75-0.90 范围内、孔体积在 1.4-2.2 cm3/g 范围内的 MOF 具有较高的储氢能力。与原始 MOF 相比,具有诱导氢溢出的复合材料的储氢能力至少高出 5 倍。纳米限域 AlH3 后具有改进的动力学氢释放特性的新型复合材料在 150 °C 和 70 bar 下实现了可逆的氢释放。
更新日期:2023-06-17
中文翻译:
氢溢出和纳米限域 AlH3 对 MOF 室温储氢的协同效应 - GCMC、DFT 和实验
为了在中等条件下提高金属有机框架 (MOF) 的储氢能力,使用高通量筛选来评估孔径极限直径 (PLD) 大于 2.89 Å 且小于 10 Å 的 7622 个 MOF。使用大正则蒙特卡洛 (GCMC) 计算 25 °C 和 1 bar 下的氢吸附容量,以综合评价孔隙结构特征对 MOF 储氢容量的影响。碳基材料、过渡金属和 MOF 之间的最佳复合质量比由密度泛函理论 (DFT) 确定。通过制备、表征和氢吸附容量测试,分析了氢气溢出影响 MOF 储氢能力的机制。为了进一步增强MOFs复合材料的储氢能力,改善金属氢化物的动力学性能和可逆性,将氢化铝(AlH3)纳米限制在MOF@carbon基体material@transition金属中,形成新的纳米限制复合材料,提高了脱氢温度,降低了可逆性。结果表明,PLD 在 7-10 Å 范围内、孔隙率在 0.75-0.90 范围内、孔体积在 1.4-2.2 cm3/g 范围内的 MOF 具有较高的储氢能力。与原始 MOF 相比,具有诱导氢溢出的复合材料的储氢能力至少高出 5 倍。纳米限域 AlH3 后具有改进的动力学氢释放特性的新型复合材料在 150 °C 和 70 bar 下实现了可逆的氢释放。