当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Engineering Nano-Au-Based Sensor Arrays for Identification of Multiple Ni(II) Complexes in Water Samples
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2023-06-19 , DOI: 10.1021/acs.est.3c02273 Ningyi Chen 1, 2 , Shuang Wu 2 , Bingjun Pan 2 , Zhichao Yang 1 , Bingcai Pan 1, 3
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2023-06-19 , DOI: 10.1021/acs.est.3c02273 Ningyi Chen 1, 2 , Shuang Wu 2 , Bingjun Pan 2 , Zhichao Yang 1 , Bingcai Pan 1, 3
Affiliation
Advanced techniques for nickel (Ni(II)) removal from polluted waters have long been desired but challenged by the diversity of Ni(II) species (most in the form of complexes) which could not be readily discriminated by the traditional analytical protocols. Herein, a colorimetric sensor array is developed to address the above issue based on the shift of the UV–vis spectra of gold nanoparticles (Au NPs) after interaction with Ni(II) species. The sensor array is composed of three Au NP receptors modified by N-acetyl-l-cysteine (NAC), tributylhexadecylphosphonium bromide (THPB), and the mixture of 3-mercapto-1-propanesulfonic acid and adenosine monophosphate (MPS/AMP), to exhibit possible coordination, electrostatic attraction, and hydrophobic interaction toward different Ni(II) species. Twelve classical Ni(II) species were selected as targets to systematically demonstrate the applicability of the sensor array under various conditions. Multiple interactions with Ni(II) species were evidenced to trigger the diverse Au NP aggregation behaviors and subsequently produce a distinct colorimetric response toward each Ni(II) species. With the assistance of multivariate analysis, the Ni(II) species, either as the sole compound or as mixtures, can be unambiguously discriminated with high selectivity in simulated and real water samples. Moreover, the sensor array is very sensitive with the detection limit in the range of 4.2 to 10.5 μM for the target Ni(II) species. Principal component analysis signifies that coordination dominates the response of the sensor array toward different Ni(II) species. The accurate Ni(II) speciation provided by the sensor array is believed to assist the rational design of specific protocols for water decontamination and to shed new light on the development of convenient discrimination methods for other toxic metals of concern.
中文翻译:
用于识别水样中多种 Ni(II) 配合物的工程纳米金传感器阵列
长期以来,人们一直渴望从污染水中去除镍 (Ni(II)) 的先进技术,但由于 Ni(II) 物种(大多数以络合物形式)的多样性而受到挑战,传统的分析方案无法轻易区分这些物种。在此,开发了一种比色传感器阵列来解决上述问题,该阵列基于金纳米颗粒(Au NP)与 Ni(II) 物质相互作用后紫外-可见光谱的变化。传感器阵列由三个N-乙酰基-l修饰的Au NP受体组成-半胱氨酸(NAC)、三丁基十六烷基溴化鏻(THPB)以及3-巯基-1-丙磺酸和单磷酸腺苷的混合物(MPS/AMP),对不同的Ni(II)表现出可能的配位、静电吸引和疏水相互作用物种。选择 12 种经典 Ni(II) 物质作为目标,系统地证明传感器阵列在各种条件下的适用性。与 Ni(II) 物质的多重相互作用被证明可以触发不同的 Au NP 聚集行为,并随后对每种 Ni(II) 物质产生独特的比色响应。在多变量分析的帮助下,可以在模拟水样和真实水样中以高选择性明确地区分 Ni(II) 物质,无论是作为单一化合物还是作为混合物。而且,该传感器阵列非常灵敏,对于目标 Ni(II) 物质的检测限在 4.2 至 10.5 μM 范围内。主成分分析表明,协调主导了传感器阵列对不同 Ni(II) 物质的响应。传感器阵列提供的准确的 Ni(II) 形态被认为有助于水净化具体方案的合理设计,并为开发其他相关有毒金属的便捷辨别方法提供新的思路。
更新日期:2023-06-19
中文翻译:
用于识别水样中多种 Ni(II) 配合物的工程纳米金传感器阵列
长期以来,人们一直渴望从污染水中去除镍 (Ni(II)) 的先进技术,但由于 Ni(II) 物种(大多数以络合物形式)的多样性而受到挑战,传统的分析方案无法轻易区分这些物种。在此,开发了一种比色传感器阵列来解决上述问题,该阵列基于金纳米颗粒(Au NP)与 Ni(II) 物质相互作用后紫外-可见光谱的变化。传感器阵列由三个N-乙酰基-l修饰的Au NP受体组成-半胱氨酸(NAC)、三丁基十六烷基溴化鏻(THPB)以及3-巯基-1-丙磺酸和单磷酸腺苷的混合物(MPS/AMP),对不同的Ni(II)表现出可能的配位、静电吸引和疏水相互作用物种。选择 12 种经典 Ni(II) 物质作为目标,系统地证明传感器阵列在各种条件下的适用性。与 Ni(II) 物质的多重相互作用被证明可以触发不同的 Au NP 聚集行为,并随后对每种 Ni(II) 物质产生独特的比色响应。在多变量分析的帮助下,可以在模拟水样和真实水样中以高选择性明确地区分 Ni(II) 物质,无论是作为单一化合物还是作为混合物。而且,该传感器阵列非常灵敏,对于目标 Ni(II) 物质的检测限在 4.2 至 10.5 μM 范围内。主成分分析表明,协调主导了传感器阵列对不同 Ni(II) 物质的响应。传感器阵列提供的准确的 Ni(II) 形态被认为有助于水净化具体方案的合理设计,并为开发其他相关有毒金属的便捷辨别方法提供新的思路。