Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires
ACS Nano ( IF 15.8 ) Pub Date : 2023-06-15 , DOI: 10.1021/acsnano.3c02733 Sabbir A Khan 1, 2 , Sara Martí-Sánchez 3 , Dags Olsteins 1 , Charalampos Lampadaris 1 , Damon James Carrad 1, 4 , Yu Liu 1 , Judith Quiñones 3 , Maria Chiara Spadaro 3 , Thomas Sand Jespersen 1, 4 , Peter Krogstrup 5 , Jordi Arbiol 3, 6
ACS Nano ( IF 15.8 ) Pub Date : 2023-06-15 , DOI: 10.1021/acsnano.3c02733 Sabbir A Khan 1, 2 , Sara Martí-Sánchez 3 , Dags Olsteins 1 , Charalampos Lampadaris 1 , Damon James Carrad 1, 4 , Yu Liu 1 , Judith Quiñones 3 , Maria Chiara Spadaro 3 , Thomas Sand Jespersen 1, 4 , Peter Krogstrup 5 , Jordi Arbiol 3, 6
Affiliation
Hybrid semiconductor–superconductor nanowires constitute a pervasive platform for studying gate-tunable superconductivity and the emergence of topological behavior. Their low dimensionality and crystal structure flexibility facilitate unique heterostructure growth and efficient material optimization, crucial prerequisites for accurately constructing complex multicomponent quantum materials. Here, we present an extensive study of Sn growth on InSb, InAsSb, and InAs nanowires and demonstrate how the crystal structure of the nanowires drives the formation of either semimetallic α-Sn or superconducting β-Sn. For InAs nanowires, we observe phase-pure superconducting β-Sn shells. However, for InSb and InAsSb nanowires, an initial epitaxial α-Sn phase evolves into a polycrystalline shell of coexisting α and β phases, where the β/α volume ratio increases with Sn shell thickness. Whether these nanowires exhibit superconductivity or not critically relies on the β-Sn content. Therefore, this work provides key insights into Sn phases on a variety of semiconductors with consequences for the yield of superconducting hybrids suitable for generating topological systems.
中文翻译:
混合量子纳米线中锡的外延驱动相选择性
混合半导体-超导纳米线构成了研究栅极可调超导性和拓扑行为的普遍平台。它们的低维度和晶体结构灵活性有利于独特的异质结构生长和有效的材料优化,这是精确构建复杂多组分量子材料的关键先决条件。在这里,我们对 InSb、InAsSb 和 InAs 纳米线上的 Sn 生长进行了广泛的研究,并演示了纳米线的晶体结构如何驱动半金属 α-Sn 或超导 β-Sn 的形成。对于 InAs 纳米线,我们观察到纯相超导 β-Sn 壳。然而,对于InSb和InAsSb纳米线,初始外延α-Sn相演变成α相和β相共存的多晶壳,其中 β/α 体积比随着 Sn 壳厚度的增加而增加。这些纳米线是否表现出超导性关键取决于β-Sn含量。因此,这项工作提供了对各种半导体上锡相的重要见解,对适合生成拓扑系统的超导混合体的产量产生了影响。
更新日期:2023-06-15
中文翻译:
混合量子纳米线中锡的外延驱动相选择性
混合半导体-超导纳米线构成了研究栅极可调超导性和拓扑行为的普遍平台。它们的低维度和晶体结构灵活性有利于独特的异质结构生长和有效的材料优化,这是精确构建复杂多组分量子材料的关键先决条件。在这里,我们对 InSb、InAsSb 和 InAs 纳米线上的 Sn 生长进行了广泛的研究,并演示了纳米线的晶体结构如何驱动半金属 α-Sn 或超导 β-Sn 的形成。对于 InAs 纳米线,我们观察到纯相超导 β-Sn 壳。然而,对于InSb和InAsSb纳米线,初始外延α-Sn相演变成α相和β相共存的多晶壳,其中 β/α 体积比随着 Sn 壳厚度的增加而增加。这些纳米线是否表现出超导性关键取决于β-Sn含量。因此,这项工作提供了对各种半导体上锡相的重要见解,对适合生成拓扑系统的超导混合体的产量产生了影响。